The Contributions of Atmospheric Rivers to Extreme Weather Events Arising from the Interactions of Tropical Disturbances with Tropospheric Jet Streams

Lance Bosart

Department of Atmospheric and Environmental Sciences University at Albany, State University of New York

Second International Atmospheric Rivers Conference Center for Western Weather and Water Extremes La Jolla, California 8 August 2016

Research support provided by NSF and NOAA Grants

Overview and motivation

- Four geographically separate, dynamically linked, highimpact extreme weather events (EWEs) occurred over North America in October 2007
- EWEs occurred subsequent to large-scale flow amplification across the North Pacific arising from interacting tropical, midlatitude, and polar disturbances
- Flow amplification culminated in a synoptic-scale flow pattern supportive of atmospheric rivers (ARs) and the occurrence of multiple EWEs

Wildfires in Southern California

14 fatalities, >1500 homes destroyed, ~3900 km² burned, ~1 million people displaced

NASA Terra visible sattelite image 1938 UTC 22 Oct QuikSCAT wind, surface observations ~1400 UTC 22 Oct

Cold Surges into Mexico

Temperatures far below normal, establish baroclinic zone later associated with heavy rain

Heavy Rainfall in the Eastern U.S.

Widespread heavy rainfall mitigates drought conditions in portions of eastern U.S.

Heavy Flooding Rainfall in Tabasco and Chiapas

Devastating widespread flooding: ~1 million people displaced, massive damage to crops, property, and infrastructure, food shortages, social unrest

	28–29 Oct	29–30 Oct	30–31 Oct
Tabasco	317 mm	195 mm	152 mm
Chiapas	403 mm	308 mm	250 mm

Maximum rainfall totals

- Ocotepec, Chiapas: 962.8 mm total accumulation -

NASA/Oak Ridge National Laboratory DAYMET precipitation: 27–31 Oct 2007 Physical geography of Chiapas and Tabasco

Record-Breaking Weather Conditions across the U.S. during 22–26 Oct 2007

daily temperature and precipitation records during 22–26 Oct

Antecedent large-scale conditions

Large-scale flow evolution

18-23 Oct 2007

DT θ (K, shading), wind speed (every 20 m s⁻¹ starting at 50 m s⁻¹, black)

Large-scale flow evolution

18-23 Oct 2007

PW (mm, shading), SLP (hPa, black),1000–500-hPa thickness (dam, red)

= TC Kajiki

= diabatic Rossby vortex

Large-scale flow evolution

18-23 Oct 2007

IR brightness temp (K, shading), 250-hPa PV (PVU, black), V_{χ} vectors (m s⁻¹), negative PV advection by V_{χ} [PVU (6 h)⁻¹, red with blue shading]

Cross section along 40°N through the wave train

1200 UTC 21 Oct 2007

PV (PVU, gray/blue shading), specific humidity (g kg⁻¹, green/yellow/red shading), θ (K, black), upward vertical velocity (Pa s⁻¹, magenta), and wind barbs (m s⁻¹)

Lagrangian perspective on flow amplification

Evolution of groups of 72-h backward trajectories released from points in jet stream (>30 m s⁻¹ wind speed in 350–175-hPa layer) with 300-, 315-, 330-K isentropes on DT overlaid

100^(a) ົງ 15 ອ້າ £ 350 300 <u>b</u> atri 340 dity 500 330 320 700 ecific 310 900 290

Average time series for groups of trajectories

warm conveyor belt (WCB) trajectories:

>600 hPa ascent in 48 h

Pressure (hPa)

vorticity (PVU)

Potential

stratospheric trajectories:

PV >2 PVU and pass poleward of 60°N

Synoptic-scale conditions supporting wildfires, first cold surge, and eastern U.S. heavy rainfall

0000 UTC 23 Oct 2007

PW (mm, shading) 850-hPa Z (dam, black contours) 1000–200-hPa IVT vectors (kg m⁻¹ s⁻¹) 2-PVU contour on 330-K surface (blue)

850-hPa T anomalies (σ, shading) 1000–500-hPa thickness (dam, red contours) 850-hPa wind (m s⁻¹, barbs)

Synoptic-scale conditions supporting wildfires, first cold surge, and eastern U.S. heavy rainfall

0000 UTC 23 Oct 2007

PW (mm, shading) 850-hPa Z (dam, black contours) 1000–200-hPa IVT vectors (kg m⁻¹ s⁻¹) 2-PVU contour on 330-K surface (blue)

850-hPa T anomalies (σ, shading) 1000–500-hPa thickness (dam, red contours) 850-hPa wind (m s⁻¹, barbs)

Synoptic-scale conditions supporting wildfires, first cold surge, and eastern U.S. heavy rainfall

Cross section along 33°N from 130°W to 75°W at 0000 UTC 23 Oct 2007

PV (PVU, gray/blue shading), specific humidity (g kg⁻¹, green/yellow/red shading), θ (K, black), upward vertical velocity (Pa s⁻¹, magenta), and wind barbs (m s⁻¹)

Flow evolution culminating in Mexican heavy rainfall

26-29 Oct 2007

left: DT θ (K, shading), wind speed (every 20 m s⁻¹ starting at 50 m s⁻¹, black)

right: PW (mm, shading), SLP (hPa, black),1000–500hPa thickness (dam, red)

Processes linked to Mexican heavy rainfall

27-29 Oct 2007

left: 1000–800-hPa layer-averaged θ advection [K (6 h)⁻¹, shading], 850-hPa θ (K, black), wind barbs (m s⁻¹)

right: PW (mm, shading), 1000–200-hPa IVT vectors (kg m⁻¹ s⁻¹), 860-hPa geopotential height (dam, black)

= TC Noel

M = mesoscale disturbance

Lagrangian perspective on four EWEs

- North Pacific jet stream was perturbed by tropical, midlatitude, and polar disturbances prior to EWE formation
- Jet perturbations culminated in the formation of a Rossby wave train (RWT) across the North Pacific and North America
- RWT-related ridge amplification was enhanced by latent heating in WCBs emanating from atmospheric rivers (ARs)
- Heating along WCBs further amplified downstream ridges and contributed to anticyclonic wave breaking (AWB)
- AWB facilitated the downstream occurrence of multiple geographically separate, but dynamically linked EWEs

A Postscript: West Virginia Flooding Event of 23–24 June 2016

- Rains > 250 mm produced flooding that killed 23 people
- Training echoes occurred along a WNW-ESE frontal zone
- Tropical moisture converged along this frontal zone
- W. Atlantic and Gulf of Mexico were moisture sources
- Remnant atmospheric river reactivated by upstream front

WV Doppler-Estimated Rainfall (inches) 23–24 June 2016

Ensemble mean 48-hr accumulated precipitation (in)

Init: Thu 2016-06-23 00 UTC Valid: Sat 2016-06-25 00 UTC

Conclusions: WV Flooding Event

- NCAR convection-allowing mresoscale ensemble captured essence of the rainstorm
- Rainstorm was supported by amalgamation of remnant AR and frontal moisture bands
- Band amalgamation along a surface boundary was driven by synoptic and mesoscale processes
- Anomalously strong low-level westerly confluent flow concentrated moisture along surface boundary
- Ascent along boundary was driven by warm-air advection in an equatorward jet-entrance region

Extra Slides

NCAR Real-time Mesoscale Ensemble Model Postage Stamps: Accumulated 48 h Rainfall (in) Ending 0000 UTC 25 June 2016

22 June 2016 24 h Precip

> *Slight northward bias

Obs (MRMS)

WV Rainstorm Meteorology

Maps Courtesy of Alicia Bentley

WV Flood Rainfall (inches) 1200 UTC –1200 UTC 23–24 June 2016

Solution Solutitaa Solution Solution Solution Solution Solution Solution So

June 24, 2016 1-Day Observed Precipitation

Created on: June 25, 2016 - 23:30 UTC Valid on: June 24, 2016 12:00 UTC

