## **Global Perspective of Atmospheric Rivers** Climatology, and Climate Modulation



### **B.** Guan<sup>1,2</sup>, J. Rutz<sup>3</sup>, A. Gershunov<sup>4</sup>

<sup>1</sup>UCLA Joint Institute for Regional Earth System Science and Engineering <sup>2</sup>NASA Jet Propulsion Laboratory <sup>3</sup>NOAA/NWS Western Region Headquarters <sup>4</sup>UCSD Scripps Institution of Oceanography

Contributing to AR Book Chapters 4.1 & 4.2

Copyright © 2016. All rights reserved.

# Outline

In this talk

- 1. Key motivations for a global perspective
- 2. Brief introduction to a global AR detection algorithm
- 3. Application of the algorithm: AR climatology and climate modulation during 1979-2015

In chapters 4.1 & 4.2:

4. Discussion of related (regionally focused) studies facilitated by the above (global) framework

### Key Motivations of a Global Perspective: **Role of ARs in Global Water Cycle**



Over 90% of poleward IVT at midlatitudes is realized by ARs that take up only ~10% of the zonal circumference; Zhu and Newell (1998)

### Key Motivations of a Global Perspective: Global Footprints/Impacts of ARs



### Key Motivations of a Global Perspective: Global Model Evaluation



### Reanalysis vs. 24 models from the GASS-YoTC Multi-model Experiment; Guan and Waliser (in prep.)

Previous model evaluation efforts have largely focused on landfalls, particularly in west coasts of North America and Europe.

### **An AR Detection Algorithm for Global Studies**

Guan and Waliser (2015)



### **Intensity and Geometry Thresholds**



### Intensity threshold: IVT > max(85<sup>th</sup> percentile, 100 kg m<sup>-1</sup> s<sup>-1</sup>)

Geometry threshold: Length > 2000 km, Length/Width > 2

### Over ~90% Agreement in Detected AR Landfall Dates Compared to 3 Independent Studies

| Study Area                | Western North America | Britain (Lavers et al. 2011) | East Antarctica (Gorodetskaya et |
|---------------------------|-----------------------|------------------------------|----------------------------------|
|                           | (Neiman et al. 2008)  |                              | al. 2014)                        |
| Period                    | 1997–2014,            | 1997–2010, October–March     | 2009–2012, All Months            |
|                           | November–March        | (High-impact events only)    | (High-impact events only)        |
| Variable for AR Detection | IWV from SSM/I and    | 900-hPa Specific Humidity    | IWV from ERA-Interim             |
|                           | SSMIS Retrievals      | from Twentieth Century       | Reanalysis                       |
|                           |                       | Reanalysis Project           |                                  |
| Percent Agreement         | 94%                   | 89%                          | 100%                             |

# ARs occur globally; more in extratropical ocean basins



# ARs account for majority of poleward moisture transport



AR fractional poleward IVT and integrated zonal scale largely consistent with original estimate by Zhu and Newell (1998)

### AR landfalls are most frequent in west coast areas; notable in many other areas



# AR duration is longest in most subtropical ocean basins



# ARs provide notable fraction of total annual precipitation



## Climate Modulation: El Niño/La Niña

Notable influence in a number of areas compared to climatology



#### Madden-Julian Oscillation

## Climate Modulation: MJO

Coherent eastwardpropagating anomalies reflecting MJO influence



4.5 3 1.5

6ÓW

0

## Climate Modulation: AO and PNA

#### Arctic Oscillation

#### Pacific-North American



Strong modulation of large-scale AR activities by AO and PNA

## Summary

- Global climatology, and climate modulation of ARs during 1979-2015 were examined using a recently developed AR detection algorithm;
- Chapters 4.1 & 4.2 of the AR book will be based on materials presented herein and review/ discussion of related studies;
- The results support the importance of ARs in global water cycle, weather, and climate.