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Case Background & Motivation

Glacier National Park
Courtesy: National Park Service

• Series of storms in Pacific Northwest early 
November 2006

• 5-7 November: Record-breaking rainfall in Cascades 
and interior mountains (Neiman et al. 2008)

• Extreme rainfall and snowmelt caused destructive 
flooding at Montana’s Glacier National Park 
(Bernhardt 2006)

• Fraction of heavy precipitation events attributable 
to atmospheric rivers (“AR fractions”) largest along 
Pacific coast

• Elevated AR fractions extend to the interior of North 
America north and south of the High Sierras (Rutz et 
al. 2015) – including the Pacific Northwest

• Investigate how and where water vapor 
penetrated the Pacific Northwest using a high-
resolution weather modeling system
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Model System
• Weather Research & Forecasting (WRF-ARW)
• Version 3.6

Domain
• Single domain (2400km x 2400km)
• 4km grid spacing
• 53 terrain-following vertical levels
• No cumulus parameterization scheme

Simulation
• 00 UTC 3 November 2006 – 00 UTC 9 

November 2006  (144 hours)
• LBC/ICs: Climate Forecast System Reanalysis 

Verification
• Precipitation: Livneh et al. (2013) dataset

based on NOAA COOP data in CONUS

WRF Model Terrain Height



WRF Verification: Precipitation
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Livneh WRF

• General agreement in distribution and magnitude
• Major regions of precipitation align with mountains
• Coastal Ranges: 10-15” ; 20”+ high ridges and mountains
• Interior Ranges: 5-7” ; 10”+ high ridges
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Area-averaged Accumulated Precipitation
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WRF Precipitation Plumes

• Antecedent precipitation 1-4”
• Main event: 00 UTC 6 Nov – 12 UTC 7 Nov (Coast) 

12 UTC 6 Nov – 00 UTC 8 Nov (Interior) 



WRF Synoptic Overview: Upper Air
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WRF Synoptic Overview: Upper Air
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WRF Synoptic Overview: Surface
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Moisture Transport Diagnostics

Integrated Water Vapor (IWV)

Integrated Vapor Transport (IVT)

Water Vapor Mass Flux (QFLUX)

• Total water vapor in column
• Summed over each model level 
• Units: centimeters

• Horizontal water vapor flux
• Calculated as 50-hPa layer averages
• Summed over layers
• Units: kg m-1 s-1

• Total water vapor mass moving 
through vertical unit cross section

• Calculated at each model level
• Units: kg s-1
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WRF Integrated Water Vapor

IWV (cm)
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• Approach, landfall, penetration, and 
decay of AR

• Oriented WSW to ENE

• Most intense phase: 
• Centered on Ore./Wa. border
• 4-5cm IWV at coast
• 3-4cm IWV in C.R. Basin 

• Decaying phase:
• Moving south to N. Cal.
• 3-4cm IWV at coast
• 2cm IWV in NE Ore.

• Location of moisture, not transport

Interior precip: 12 UTC 6 Nov – 00 UTC 8 Nov



WRF Integrated Vapor Transport: Plan View
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• Landfall at Ore./Wa. border

• Penetration occurred across 
length of Cascades

• Maximum penetration 
through C. R. Gorge and over 
terrain immediately south of it

• Follow this corridor with time 
series

Interior precip: 12 UTC 6 Nov – 00 UTC 8 Nov



WRF Integrated Vapor Transport: Temporal Plumes
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WRF Water Vapor Mass Flux: Plan View 

Water Vapor Flux (00 UTC 6 Nov – 00 UTC 8 Nov)
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• 48-hour total water vapor flux

• Isolates main AR from initial 
landfall to decay

• Corridor of penetration 
~150km C.R. Gorge and south

• Terrain south of Gorge 3-4k 
feet and ~50km wide

• Terrain north of Gorge 4-6k 
feet and ~100km wide



WRF Water Vapor Mass Flux: Plan View 
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WRF Water Vapor Mass Flux: Plan View 
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WRF Water Vapor Mass Flux: Cross-Sections
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• Core flux under 3km
• Northern half of OR

C. R. Gorge
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WRF Water Vapor Mass Flux: Cross-Sections
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• Core flux under 3km
• Northern half of OR

• Through C.R. Gorge 
• Over Cascades, esp. in OR
• Flux through Gorge similar 

to that west of Cascades

• Core of flux downwind of 
Gorge

• Notable weakening of flux

C. R. Gorge



WRF Water Vapor Loss Over Cascades
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WRF Water Vapor Loss: 200 km Segments
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Summary

• Intense inland penetrating AR in Pacific Northwest early November 2006
• Record rainfall and flooding over interior mountains (Glacier Nat’l Park)

• Water vapor breached length of Cascades (3-7k foot ridge)
• 25% water vapor transport reduction across Cascades
• Main corridor for water vapor penetration ~150 km wide from Columbia 

River Gorge south
• Greater reduction north of Gorge (25%) vs. south of Gorge (18%)

• Follow moisture transport to interior mountains
• Calculate moisture transport including hydrometeor mass
• Modify terrain to close Gorge, increase barrier height

Next Steps
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