Factors Influencing the Inland Penetration of Atmospheric Rivers over Western North America

Jon Rutz (jonathan.rutz@noaa.gov), Jim Steenburgh, Marty Ralph, and Michael Alexander

Motivation

- The climatology of ARs and their impacts along certain coastlines (e.g., U.S. West Coast) are fairly well known
- *But* the climatology of ARs and their inland penetration into interior regions (e.g., the interior western U.S.), and the relevant processes, are not well understood

Data and Methods

- Atmospheric Data
 - ERA-Interim reanalysis at 1.5° resolution
 - 6-h data during cool-season months (Nov–Apr); Nov 1988 to Apr 2011
 - Interpolated to 1-h data for trajectory analysis
- Precipitation Data
 - CPC: gridded 0.25° resolution; 24-h total valid at 12Z
 - SNOTEL: high-elevation; 0.1" resolution; hourly
- AR Identification method follows Rutz et al. (2014)
 - Length \ge 2000 km; no width criterion; IVT \ge 250 kg m⁻¹ s⁻¹ throughout

AR Climatology

AR Frequency

AR Duration

AR Seasonality

AR Contribution to Cool-Season Precipitation

AR Contribution to Top-Decile 24-h Events

Trajectory Analysis

Trajectory Analysis Design

Trajectory Analysis:

- Three transects $(T_1 T_3)$
- If AR present at any T₁ grid point, trajectories initiated (950 & 700 hPa) from that point

Trajectory classification:

- *Coastal decaying*: no longer in AR at T₂
- *Inland penetrating*: still in AR at T₂, but not T₃
- *Interior penetrating*: still in AR at T₃

950-hPa Trajectories

950-hPa Trajectories

950-hPa Trajectories

Trajectory Characteristics

Water Vapor Flux

Specific Humidity and Wind Speed

Changes in Water Vapor Flux

Changes in Specific Humidity

Changes in Wind Speed

Discussion

- Inland- and interior-penetrating trajectories lose a smaller fraction of initial water vapor, but not necessarily a smaller amount they have more to begin with. These losses are at least partially offset by increases in wind speed, especially over the southwestern U.S.
- Why the increases in trajectory wind speed? A few ideas...
 - 1) Increase in elevation
 - 2) Northward movement into regions of enhanced baroclinicity
 - 3) Potential cyclogenesis over the southwestern U.S. associated with landfalling ARs

Summary

- AR climatology and inland penetration modulated by landfalling AR characteristics, and the orientation of the synoptic pattern relative to topography
- Can be understood in terms of three regimes...
 - PacNW: large number of ARs; modest inland/interior penetration
 - California: modest number of ARs; rare inland/interior penetration
 - Baja Coast: small number of ARs; frequent inland/interior penetration

