The Cloud-Radiative Forcing of the U.S. landfalling Atmospheric Rivers

Qianwen Luo*, Wen-wen Tung

Department of Earth, Atmospheric, & Planetary Sciences Purdue University

*luo43@purdue.edu

[1] Q. Luo and W.-w. Tung, 2015: Case study of moisture and heat budgets within atmospheric rivers, *Mon. Wea. Rev.*, DOI: 10.1175/MWR-D-15-0006.1
[2] Q. Luo and W.-w. Tung, 2016: The Cloud-Radiative Forcing of the Atmospheric Rivers on the US continents: an observational climatology study, *in preparation*

Christmas Week 2015 in Midwest

Before

After

Landsat 8 December 8, 2015

Landsat 7 January 1, 20

Jan 1, 2016

http://landsat.usgs.gov/

Atmospheric River (AR): redistribute moisture globally

Integrated Water Vapor (mm)

http://tropic.ssec.wisc.edu/real-time/mimic-tpw/epac/main.html

Current knowledge

- Winter ARs arrive at the <u>West coast</u> (Neiman et al., 2008) and <u>Central-Eastern US</u> (Lavers and Villarini 2013)
- 2. The impacts of ARs on Atmospheric energy budget through Cloud-Radiative Forcing has only been preliminarily established in <u>weather-</u> <u>cases studies</u> (e.g., Luo 2013; Luo and Tung 2015).

What are the sufficient conditions for <u>extensive</u> CRF induced by ARs over the continental U.S.?

Data for Nov—Mar, 2000–2008

1. ECMWF ERA-Interim Reanalysis

(Dee et al., 2011)

Global, daily, 1.5[•]×1.5[•] horizontal grids at 37 pressure levels from 1000 to 1 hPa, and at the surface

2. Clouds and the Earth's Radiant Energy System SYN1deg (CERES, Wielicki et al., 1996)

Global, daily, 1•×1•

3. Global Precipitation Climatology Project One-Degree Daily Precipitation (GPCP, Huffman et al. 2001)

Global, daily, 1•×1•

1. ARs during Nov—Mar, 2000–2008:

- Used indices from Dettinger et al. (2011) for ARsw (60 cases) and AR_{NW} (60 cases)
- Constructed index for AR_{GULF} 0—3 days
 <u>after</u> AR_{SW} (35 cases)
 and AR_{NW} (16 cases),
 modified after Lavers
 and Villarini (2013)

Methods

2. Computed variables from ERA-Interim:

- Integrated horizontal water vapor transport (IVT, Neiman et al., 2008) = $\frac{1}{g} \int_{P_{efc}}^{300 \ hPa} qVdp$;
- Apparent heat source (Q₁) & Apparent moisture sink (Q₂, Yanai et al. 1973; Luo and Tung 2015)

3. Other Statistical analysis:

- Singular Value Decomposition (SVD) on
 CERES SWCRF and LWCRF
- Probability Density Functions
- Correlational Analysis

AR_{NW}: enhanced moisture transport on Day-1~+1

Enhanced moisture transport

ARsw: weaker yet prolonged moisture transport

AR_{NW}: AR-storm quickly dissipated

Anomalous Total Cloud Ice Water Path (g m⁻²) Sea-level Pressure (hPa)

Strong Pacific High

ARsw: eastward propagating AR-storm

Anomalous Total Cloud Ice Water Path (g m⁻²) Sea-level Pressure (hPa)

Persistent Low offshore

ARsw: prolonged mixed-phased clouds

Anomalous Total Cloud Ice Water Path (g m⁻²) Sea-level Pressure (hPa)

To study cloud properties & impacts:

Q₁ and Q₂ suggest

- Convection associated with the AR_{NW} was strongest in the landfalling regions on Day1, yet it quickly decayed.
- In contrast, AR_{SW} generated persistent heating/drying along the West Coast. From Day+0 onward, the heating/drying was stronger than that produced by the AR_{NW}.

ARsw: less moisture but stronger CRF in Western US

SVD and Reconstruction

SWCRF, LWCRF EOFs PCs variances $= U \sqcup V^T$

- Reconstructed
 - C such that:
- Computed time mean for time steps when: $||PC|| - E[||PC||]_{3}$

eigenvalues

M

å/

з 50%

ARsw: extensive SWCRF cooling

ARsw: extensive LWCRF warming

After ARsw: More ARgulf

Total # of **AR**GULF:

- 35 after ARsw
- 16 after AR_{NW}

After ARgulf: Stronger ARgulf

Key Conclusions

- AR_{SW} has <u>weaker</u> hydrological impacts but <u>extensive</u> CRF in the western US. The latter is induced by persistent Low pressure offshore.
- The <u>synergy</u> between the west-coast AR and the AR_{GULF} resulted in spatio-temporal extensive cloud coverage therefore inducing apparent CRF.
- Such scenario is <u>more frequently</u> associated with ARsw.

Don't hesitate to contact me: <u>luo43@purdue.edu</u>

