

Observations of Water Vapor Transport by North Pacific Atmospheric Rivers

F.M. Ralph, S. Iacobellus, P.J. Neiman, J. Cordeira J.R. Spackman, D. Waliser, G. Wick, A.B. White, C. Fairall

International Atmospheric Rivers Conference Scripps Inst. Oceanography, La Jolla 11 August 2016

Experiments in 1998,2001 provided a mean vert profile in ARs

- CALJET and PACJET field experiments used the NOAA P-3 aircraft to profile ARs
- Composite sounding located 500 km off CA coast in atmos. river & pre-cold-frontal LLJ
- LLJ directed toward coast and situated at 1 km MSL
- Most (75%) of pre-cold-frontal along-river moisture flux is below 2.5 km MSL
- Moist neutral stratification below 2.8 km MSL, hence no resistance to orographic lifting
- Overlapping set of conditions conducive to orographic rain enhancement in coastal mtns

Ralph et al. (2005), MWR

Ralph et al. 2004 and 2011 (Mon. Wea. Rev.) presented two detailed cross sections from two field experiments

CalWater Field Studies Designed to Quantify the Roles of Atmospheric Rivers and Aerosols in Modulating U.S. West Coast Precipitation in a Changing Climate

Ralph, F.M, K. A. Prather, D. Cayan, J.R. Spackman, P. DeMott, M. Dettinger, C. Fairall, R. Leung, D. Rosenfeld, S. Rutledge, D. Waliser, A. B. White, J. Cordeira, A. Martin, J. Helly, and J. Intrieri,.

Bull. Amer. Meteor. Soc. (July 2016)

CalWater 2014 and 2015 Added 12 Cases with full dropsonde cross sections - 523 drops' from NOAA G-IV

CalWater 2

Precipitation, Aerosols, and Pacific Atmospheric Rivers Experiment

17 AR Cases now available with full dropsonde cross-sections

(includes 5 from flights prior to CalWater2)

Location of the dropsonde transects listed in Table 1. The background image denotes weekly AR frequency calculated using the AR Detection Tool of Wick et al (2013) applied during the 2003-2012 cool seasons (November-February). AR frequency data west of 160°W was not available.

Typical Dropsonde Retrieval from G-IV Aircraft

- data starts ~ 175-200 hPa and down to surface
- generally ~1500-2000 levels with 5-10 meter resolution
- takes ~ 15 minutes to reach surface
- measurements of P, T, Z, RH, U, and V
- allows calculation of integrated water vapor (IWV) and integrated vapor transport (IVT)

$$IWV = \frac{1}{g} \int_{p_{sfc}}^{p_{top}} q \, dp \P \qquad IVT = \frac{1}{g} \int_{p_{sfc}}^{p_{top}} qV \, dp \P$$

Examined Dropsondes for Transects Across ARs

AR Boundaries defined using:

IWV > 20 mm or IVT > 250 kg m⁻¹ sec⁻¹

- Test sensitivity of calculated AR properties to threshold method
- Not all flight missions were designed to transect an AR
- Some transects did not completely cross the AR

	Date	Aircraft	Central	No. of	Mean	IWV _{MAX}		TIVT _a	Width _a	TIVT _b	Width _b
			Latitude	Sondes [@]	Dir.	(mm)	(kg m ⁻¹ s ⁻¹)	(10 ⁸ kg s ⁻¹)	(km)	(10 ⁸ kg s ⁻¹)	(km)
	Subtropical										
1	25-Mar-2005	P-3	27.2°N	16	233	41.2	674	4.26	1196	3.96	1016
2	12-Feb-2011	G-Hawk	27.7°N	9	237	41.0	585	2.37	811	1.77	415
3	04-Mar-2011	G-IV	23.0°N	17	220	48.9	725	4.85	1539	4.24	849
6	08-Feb-2014	G-IV	31.0°N	9	230	41.7	1029	3.44	602	3.56	611
10	18-Feb-2014	G-IV	27.5°N	11	203	39.6	314	3.54	1802	1.33	477
15	14-Feb-2015	G-IV	24.2°N	11	229	46.1	1204	6.62	846	6.87	917
16	20-Feb-2015	G-IV	27.0°N	13	240	41.7	861	5.19	964	5.63	1092
17	22-Feb-2015	G-IV	31.0°N	17	232	39.1	926	6.94	1334	6.30	1026
		Mean (subtr	opical cases)	13	228	42.4	790	4.65	1137	4.21	800
Standard Deviation		3	11	3.1	259	1.48	380	1.88	247		
	Mid-latitude										
4	04-Mar-2011	G-Hawk	41.5°N	10	231	18.1	531	NA*	NA*	2.46	687
5	09-Mar-2011	G-Hawk	40.4°N	15	226	25.0	622	1.92	382	3.26	723
7	11-Feb-2014	G-IV	42.1°N	23	232	37.4	1296	7.94	1035	8.05	1067
8	12-Feb-2014	G-IV	40.8°N	14	245	32.0	636	3.21	808	2.80	619
9	13-Feb-2014	G-IV	42.5°N	21	220	33.2	789	4.39	733	6.90	1371
11	15-Jan-2015	G-IV	41.8°N	9	219	27.4	733	3.21	639	3.45	692
12	17-Jan-2015	G-IV	41.6°N	10	236	28.4	831	4.17	603	6.11	1154
13	24-Jan-2015	G-IV	38.2°N	12	203	29.9	607	2.58	534	3.74	868
14	08-Feb-2015	G-IV	34.9°N	11	216	34.8	938	4.35	774	5.96	1054
	Mean (midlatitude cases)			14	225	29.6	776	3.97	689	4.75	915
Standard Deviation			5	12	5.4	219	1.71	184	1.91	244	
	Overall Mean				227	35.6	782	4.31	913	4.49	861
Standard Deviation				4.2	12	8.1	247	1.69	385	1.97	260

Summary of Statistics from 17 AR Transects

	No. of Sondes	Mean Dir.	IWV max (mm)	IVT max (kg m ⁻¹ s ⁻¹)	TIVT ₁ (10 ⁸ kg s ⁻¹)	Width ₁ (km)	TIVT ₂ (10 ⁸ kg s ⁻¹)	Width ₂ (km)
Overall Mean	13.4	227	35.6	782	4.3	910	4.5	860
Standard Deviation	4.2	12	8.1	247	1.7	390	2.0	260

TIVT = Total Integrated Vapor Transport (10⁸ kg sec⁻¹) TIVT1: AR defined using IWV > 20 mm threshold TIVT2: AR defined using IVT > 250 kg m⁻¹ sec⁻¹ threshold

TIVT using IVT threshold within ~ 3% of IWV threshold method AR Width within ~ 6% between the two threshold methods

• IVT threshold of 250 kg m⁻¹ s⁻¹ corresponds well to established IWV threshold of 20mm

- Additionally IVT threshold:
 - produces more consistent results between sub-tropical and mid-latitude ARs
 - more relevant to orographic precipitation than IWV

Summary of Statistics from 17 AR Transects

	No. of Sondes	Mean Dir.	IWV max (mm)	IVT max (kg m ⁻¹ s ⁻¹)	TIVT ₁ (10 ⁸ kg s ⁻¹)	Width ₁ (km)	TIVT ₂ (10 ⁸ kg s ⁻¹)	Width ₂ (km)
Overall Mean	13.4	227	35.6	782	4.3	910	4.5	860
Standard Deviation	4.2	12	8.1	247	1.7	390	2.0	260

TIVT = Total Integrated Vapor Transport (10⁸ kg sec⁻¹) TIVT1: AR defined using IWV > 20 mm threshold TIVT2: AR defined using IVT > 250 kg m⁻¹ sec⁻¹ threshold

Maximum Values over all 17 ARs:

Max IWV = 48.9 mm Max IVT = 1296 kg m⁻¹ s⁻¹ Max TIVT = 8.05 x 10^8 kg s⁻¹

Average AR TIVT equivalent to ~ flow rate of 27 Mississippi Rivers (2.6 Amazons) Maximum AR TIVT equivalent to ~ flow rate of 47 Mississippi Rivers (4.5 Amazons)

Sub-tropical ARs Only (latitude < 35°N)

Mid-latitude ARs Only (latitude > 35°N)

Comparison to GFS Products

Start: 13-Feb-2014 18:33Z End: 13-Feb-2014 20:58Z

Comparison to GFS Products

Analysis (Ohr Lead):

Comparison to GFS Products

60-Hour Forecast:

AR Outlook for Pt Reyes, CA area, including Russian River

Summary by F.M. Ralph 8 AM PT Fri 4 March 2016

	Date	Aircraft	Central	No. of	Mean	IWV _{MAX}	IVT _{MAX}	TIVT _a	Width _a	TIVT _b	Width _b
			Latitude	Sondes [@]	Dir.	(mm)	(kg m ⁻¹ s ⁻¹)	(10 ⁸ kg s ⁻¹)	(km)	(10 ⁸ kg s ⁻¹)	(km)
		Overal	l Mean	13.4	227	35.6	782	4.31	913	4.49	861
2	12-Feb-2011	G-Hawk	27.7°N	9	237	41.0	585	2.37	811	1.77	415
3	04-Mar-2011	G-IV	23.0°N	17	220	48.9	725	4.85	1539	4.24	849
6	08-Feb-2014	G	An a	vorag			m wide	and		3.56	611
10	18-Feb-2014	Verage AR is 800 kill wide and						1.33	477		
15	14-Feb-2015	_G Irar	isports	54.5±	2.0 X	10° Kg	g/s of w	ater va	por	6.87	917
16	20-Feb-2015	G-IV	27.0°N	13	240	41.7	861	5.19	964	5.63	1092
17									// - 4		
	Using	ivi or	IVV a	s the I	oasis i	or det	ining tr	ie "eag	es" oi	an AK	
	changed the TIVT by only 4%										
	Thus,	for the	se pur _l	ooses,	eithe	e <mark>r IVT o</mark>	or IWV	<mark>provide</mark>	e very	similar	
4	results, though IVT was more robust in other ways										
5	11 Eab 2014	C IV	42.1°N	22	222	27.4	1296	7.04	1025	8 O5	1067
, 8	12-Feb-2014	G-IV	40.8°N	14	232	37.4	636	3 21	808	2.00	1007
9	12 1 00 2011	0.11	10.0 11		2.15	52.0	000	0.21	000	2 80	619
11	Δn a									2.80	619
12		vera	ge A	R tr	ans	port	ts 27	MIS	SISS		619
		vera	ge A	Rtr	ans	port	ts 27	MIS	SISS		619
13	24-Jan-2015	vera _{G-IV}	ge A 38.2°N		ans 203	port 29.9	ts 27	MIS 2.58	SISS 534	2.80 SIPPIS 0.11 3.74	619 1154 868
13 14	24-Jan-2015 08-Feb-2015	G-IV G-IV	38.2°N 34.9°N	R tr 12 11	203 216	29.9 34.8	ts 27 607 938	2.58 4.35	SISS 534 774	2.80 51PPIS 0.11 3.74 5.96	619 1154 868 1054
13 14	24-Jan-2015 08-Feb-2015	G-IV G-IV Mean (midlat	38.2°N 34.9°N itude cases)	R tr 12 11 14	Cans 203 216 225	20.4 29.9 34.8 29.6	ts 27 607 938 776	2.58 4.35 3.97	534 774 689	2.80 SIPPIS 0.11 3.74 5.96 4.75	619 1154 868 1054 915
13 14	24-Jan-2015 08-Feb-2015	C-IV G-IV G-IV Mean (midlat	38.2°N 34.9°N itude cases)	R tr 12 11 14 5	203 216 225 12	29.9 34.8 29.6 5.4	27 607 938 776 219	2 .58 4.35 3.97 1.71	SISS 534 774 689 184	2.80 IPPIS 0.11 3.74 5.96 4.75 1.91	619 1154 868 1054 915 244
13 14	24-Jan-2015 08-Feb-2015	G-IV G-IV Mean (midlat Standar	38.2°N 34.9°N itude cases)	R tr 12 11 14 5	Cans 203 216 225 12	29.9 34.8 29.6 5.4	607 938 776 219	2 .58 4.35 3.97 1.71	534 774 689 184	2.80 5199915 0.11 3.74 5.96 4.75 1.91	619 1154 868 1054 915 244
13 14	24-Jan-2015 08-Feb-2015	G-IV G-IV Mean (midlat Standar	38.2°N 34.9°N itude cases) rd Deviation	R tr 12 11 14 5	Cans 203 216 225 12 227	29.9 34.8 29.6 5.4 35.6	237 607 938 776 219 782	2.58 4.35 3.97 1.71 4.31	534 774 689 184 913	2.80 5199915 0.11 3.74 5.96 4.75 1.91 4.49	619 1154 868 1054 915 244 861

Comparison to Reanalysis Products

- compare sonde IWV and IVT to interpolated Reanalysis values

NCAR Reanalysis: 2.5°x2.5°, 6 hourly

Comparison to Reanalysis Products

- compare sonde IWV and IVT to interpolated Reanalysis values

ERA-Interim: 1.0°x1.0°, 6 hourly

Summary

- CalWater2 program provided a large and very useful dropsonde data set
- Performed analysis of transects across 17 ARs
- Using IVT threshold to define AR boundaries compares well to IWV threshold
- Composite AR cross-section constructed and displays distinct "AR features"

IWV vs. IVT

Data from individual dropsondes with IWV > 20 mm or IVT > 250 kg m⁻¹ s⁻¹

- IWV not well correlated with IVT when all latitudes considered

WINTER STORMS AND PACIFIC ATMOSPHERIC RIVERS (WISPAR)

ORTHROP GRUMMAN

J. R. Spackman^{1,2}, G. A. Wick¹, M. L. Black³, F. M. Ralph¹, Y. Song⁴, Y. Zhu⁴, P. J. Neiman¹, J. Intrieri¹, T. Hock⁵, B. H. Lambrigtsen⁶, R. E. Hood⁷

¹NOAA Earth System Research Laboratory
 ²Science and Technology Corporation
 ³NOAA AOML Hurricane Research Division
 ⁴NCEP Environmental Modeling Center

⁵National Center for Atmospheric Research
 ⁶NASA Jet Propulsion Laboratory
 ⁷NOAA Unmanned Aircraft Systems Program

872

NAS

Example: FEBRUARY 14, 2015 IOP8

Example: FEBRUARY 14, 2015 IOP8

IWV and IVT along Transect

Rankings of key characteristics

- Histograms showing the frequency distribution of hourly observations of
 - (a) IWV,
 - (b) upslope wind speed, and
 - (c) upslope IWV flux during the 1460 hours of AR conditions within the 91 AR events.
- This enables comparisons between current or predicted events to assess how extreme they are relative to past events.

Ralph et al. 2013 J. Hydrometeorology

Upper 1% and 10% Thresholds for Key Variables

	Top 10%	Top 1%
Parameter	Threshold	Threshold
Integrated Water Vapor (cm)	3.3	4.1
Total Wind Speed (m/s)	22.2	30.6
Total Integrated Water Vapor Flux (cm)(m/s)	61.0	83.0
Upslope Wind Speed (m/s)	17.9	24.0
Upslope Integrated Water Vapor Flux (cm)(m/s)	50.8	74.4
CZC Rain Rate (mm)	8.7	16.0
HBG Soil Moisture	51.6%	56.8%
Russion River Stream Flow (1000 cfs)	13.3	36.9
Austin Creek Stream Flow (1000 cfs)	4.1	12.1

Upper 10% and 1% thresholds for hourly values of each key variable from within the 1460 AR hours during the 6-year study period.

Ralph et al. 2013 J. Hydrometeorology

18-21 Jan 2012 AR Event

- The long duration of AR conditions in Oregon and northern California supported widespread heavy rainfall
- 72-h precipitation totals exceeding 100 mm were common along the west coast, with largest amounts observed in southwestern Oregon and northwestern CA
- Localized precip. totals ranged from 400 mm to >500 mm (R-CATs 3-4) in this region

A scale for maximum 3-day rainfall "R-Cat"

P > 500mm

4

perspectives on extreme west-coast precipitation associated with atmospheric rivers during December 2010: *Bulletin of the American Meteorological Society*, (2012)

Some Options for an AR Intensity Scale

- Maximum IVT offshore and at landfall
- Total IVT offshore and at landfall
- Time-integrated (3-day) IVT offshore and at landfall
- Maximum 3-day rainfall onshore
- Other

Composite Cross-Section of an AR

- Normalize using width of AR and Total IVT across AR.