

Global Prediction Skill of Atmospheric Rivers Seasonal Variability and Relationship to ENSO Phase

Michael J. DeFlorio¹, Duane E. Waliser^{1,2,3}, Bin Guan^{1,2}

¹ = Jet Propulsion Laboratory, California Institute of Technology, Pasadena CA
² = Joint Institute for Regional Earth System Science and Engineering, UCLA, Los Angeles CA
³ = Center for Western Weather and Water Extremes, Scripps Institution of Oceanography, UCSD, La Jolla CA

Atmospheric rivers (and their associated flood and hazard risks) occur globally.

Fig 7a, Guan and Waliser 2015

Motivation for this study:

There is a need for rigorous global assessment of AR prediction skill and predictability on subseasonal timescales to improve model development, weather forecasting, and water resources management.

The S2S database: our toolbox for assessing global AR prediction skill and predictability

- Suite of real-time forecasts and several decades of hindcasts from 11 operational forecast models
- Maximum lead time ranging from 32 days to 60 days
- Hindcast ensemble size ranging from 1 to 33
- Variety of forecasting configurations and other model parameters (heterogeneity amongst models)
 - opportunity for S2S-related research to suggest optimal future configurations for weekly to monthly forecasts

The S2S Database: a joint WCRP-WWRP Project

	Time- range	Resol.	Ens. Size	Freq.	Hcsts	Hcst length	Hcst Freq	Hcst Size
ECMWF	D 0-46	T639/319L91	51	2/week	On the fly	Past 20y	2/weekly	П
икмо	D 0-60	N216L85	4	daily	On the fly	1996-2009	4/month	3
NCEP	D 0-44	N126L64	4	4/daily	Fix	1999-2010	4/daily	I
EC	D 0-32	0.6x0.6L40	21	weekly	On the fly	1995-2014	weekly	4
CAWCR	D 0-60	T47L17	33	weekly	Fix	1981-2013	6/month	33
ЈМА	D 0-34	T319L60	25	2/weekly	Fix	1981-2010	3/month	5
КМА	D 0-60	N216L85	4	daily	On the fly	1996-2009	4/month	3
СМА	D 0-45	T106L40	4	daily	Fix	1886-2014	daily	4
CNRM	D 0-32	T255L91	51	Weekly	Fix	1993-2014	2/monthly	15
CNR- ISAC	D 0-32	0.75x0.56 L54	40	weekly	Fix	1981-2010	6/month	I
HMCR	D 0-63	I.IxI.4 L28	20	weekly	Fix	1981-2010	weekly	10

Vitart et al. 2016

Detecting ARs in observations & operational models

- We compute IVT values for each hindcast ensemble member.
- We apply the Guan and Waliser 2015 detection algorithm to the ensemble hindcasts of IVT for all lead times.
- We compare the locations of the detected ARs in the hindcasts with observations to determine "hit" rates.

• We aggregate statistics of hit rates to examine lead-time, spatial, seasonal, climate variation, and other sensitivities.

Our method for global assessment of AR prediction skill

- S2S hindcast data
 - ECMWF (1995-2014)
 - HMCR (1995-2010)
- Observations
 - ERA-I data (used to initialize hindcasts)
- Goal: produce global maps of AR prediction skill (and predictability)

"1000km" AR hit threshold

How does AR prediction skill vary as a function of forecast lead time, hit threshold distance, S2S model choice, and season?

DJF AR prediction skill: ECMWF 1995-2014

1000 km threshold

500 km threshold

Model dependence: DJF ECMWF 1995-2014 vs. HMCR 1995-2010

-50

ECMWF

3 wk lead

4 wk lead

HMCR

.3

Seasonal dependence: DJF vs. MAM, HMCR

DJF

50

-50

-50

MAM

Can we exploit higher than average skill at longer lead times during certain phase regimes of large scale climate variability?

3-week lead AR skill: ECMWF Apr 1997 – Feb 1998 average hindcasts (strong El Niño conditions)

1995-2014 DJF avg

1997-1998 +ENSO avg

45% 3-week lead skill increase in North Pacific during El Niño season relative to climatology (average between 150E-240E, 30N-60N).

Can we exploit higher than average skill at longer lead times during very active AR periods (which often contribute significantly to annual precipitation)?

Winter 2010 case study: an exceptionally active AR year over the Sierra Nevada region

High frequency of **ARs** associated with very snowy conditions and negative AO/PNA phase locking during December 2010.

Nov 2 – Dec 3 2010 ECMWF AR prediction skill

2 wk lead

Regional application: landfalling AR on December 3, 2015 during El Niño

- Previous examples use fixed ECMWF hindcast date
 - here, we fix observed date (to focus on a particular observed AR event of interest) and assess skill of 1 week, 2 week, 3 week, and 4 week lead hindcasts

Summary and preliminary conclusions

- wrote an algorithm and developed flexible methodology for calculating prediction skill of AR events in operational forecast models
- prediction skill generally decreases with more stringent AR distance threshold
 - moderate-to-high prediction skill at 1 week lead even with reduced 500-km distance threshold, especially over climatologically active AR regions (e.g. N. Pacific)
- generally higher prediction skill at 1-2 week leads in DJF relative to MAM
- potential increase of 3-4 week skill relative to climatology during strong El Niño and La Niña events and anomalously active AR winters
 - will add more ENSO events and examine phase locking of different climate modes to try to exploit predictability and prediction skill at longer leads
- our global methodology allows for targeted regional prediction skill estimates of particular observed AR events
- currently expanding methodology to utilize a dozen S2S operational models, and to estimate predictability of ARs

Thanks! Stay tuned...

Mars Science Laboratory Project (MSL)