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Atmospheric rivers (and their associated flood 
and hazard risks) occur globally.

Fig 7a, Guan and Waliser 2015



Motivation for this study:

There is a need for rigorous global assessment of AR 
prediction skill and predictability on subseasonal

timescales to improve model development, weather 
forecasting, and water resources management.



The S2S database: our toolbox for assessing 
global AR prediction skill and predictability

• Suite of real-time forecasts and 
several decades of hindcasts from 
11 operational forecast models

• Maximum lead time ranging from 32 
days to 60 days

• Hindcast ensemble size ranging 
from 1 to 33

• Variety of forecasting configurations 
and other model parameters 
(heterogeneity amongst models)

• opportunity for S2S-related research 
to suggest optimal future 
configurations for weekly to monthly 
forecasts

Vitart et al. 2016

The S2S Database: a joint WCRP-WWRP Project



Detecting ARs in observations & operational models

Fig 2, Guan and Waliser 2015

• We compute IVT values for each 
hindcast ensemble member.

• We apply the Guan and Waliser
2015 detection algorithm to the 
ensemble hindcasts of IVT for all 
lead times.

• We compare the locations of the 
detected ARs in the hindcasts with 
observations to determine “hit” 
rates.

• We aggregate statistics of hit rates 
to examine lead-time, spatial, 
seasonal, climate variation, and 
other sensitivities.



Our method for global assessment of AR 
prediction skill

• S2S hindcast data
• ECMWF (1995-2014)

• HMCR (1995-2010)

• Observations
• ERA-I data (used to 

initialize hindcasts)

Goal: produce global 
maps of AR prediction skill 
(and predictability)

”1000km” AR hit threshold



How does AR prediction skill vary as a function of 
forecast lead time, hit threshold distance, S2S model 

choice, and season?



DJF AR prediction skill: ECMWF 1995-2014
1000 km threshold 500 km threshold



Model dependence: DJF ECMWF 1995-2014 
vs. HMCR 1995-2010

ECMWF HMCR



Seasonal dependence: DJF vs. MAM, HMCR
DJF MAM



Can we exploit higher than average skill at longer lead 
times during certain phase regimes of large scale 

climate variability?



3-week lead AR skill: ECMWF Apr 1997 – Feb 1998 
average hindcasts (strong El Niño conditions)

1995-2014 DJF avg 1997-1998 +ENSO avg

45% 3-week lead skill increase in North Pacific during El Niño season 

relative to climatology (average between 150E-240E, 30N-60N).



Can we exploit higher than average skill at longer lead 
times during very active AR periods (which often 
contribute significantly to annual precipitation)?



Winter 2010 case study: an exceptionally active AR year over the 
Sierra Nevada region

High frequency of 

ARs associated 

with very snowy 

conditions and 

negative AO/PNA 

phase locking

during December 

2010.

Fig 5, Guan et al. 2013



Nov 2 – Dec 3 2010 ECMWF AR prediction skill



Regional application: 
landfalling AR on 

December 3, 2015 
during El Niño

• Previous examples use fixed 
ECMWF hindcast date

• here, we fix observed date (to 

focus on a particular observed AR 

event of interest) and assess skill 

of 1 week, 2 week, 3 week, and 4 

week lead hindcasts



Summary and preliminary conclusions

• wrote an algorithm and developed flexible methodology for calculating 
prediction skill of AR events in operational forecast models

• prediction skill generally decreases with more stringent AR distance
threshold

• moderate-to-high prediction skill at 1 week lead even with reduced 500-km distance 
threshold, especially over climatologically active AR regions (e.g. N. Pacific)

• generally higher prediction skill at 1-2 week leads in DJF relative to MAM

• potential increase of 3-4 week skill relative to climatology during strong El 
Niño and La Niña events and anomalously active AR winters

• will add more ENSO events and examine phase locking of different climate modes to 
try to exploit predictability and prediction skill at longer leads

• our global methodology allows for targeted regional prediction skill 
estimates of particular observed AR events

• currently expanding methodology to utilize a dozen S2S operational 
models, and to estimate predictability of ARs



Thanks! Stay tuned...
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