

Proudly Operated by Battelle Since 1965

Aerosol Effects on Clouds and Precipitation: Insights from CalWater 2015 and a Multi-year Quasi-global Simulation of Trans-Pacific Transport of Aerosols

L. Ruby Leung, Chun Zhao, Zhiyuan Hu, Jiwen Fan, Sunny Lim, and Samson Hagos

2016 International Atmospheric Rivers Conference, August 8 - 11, 2016, La Jolla, CA

Dust effects identified from in-situ measurements during CalWater 2011

 During an AR event, dust and biological particles from longrange transport influence ice nucleation in mid-level orographic clouds and precipitation forming processes

(Creamean et al. 2013, Science)

Pacific Northwest

NATIONAL LABORATORY
Proudly Operated by Battelle Since 1965

Modeling quantifies aerosol effects on precipitation

(a) FEB16 Dust effects (low CCN) **Dust effects (high CCN)** Diff. in accumulated rain (%) 3000 25 20 2500 15 2000 E 10 1500 1000 500 -5 300 100 150 200 350 400 250**CCN effects (no dust) CCN effects (with dust)** 17:00 UTC on Feb. 16

(Fan et al. 2014, ACP)

- Dust increases precipitation (mainly snowfall) by up to 20%, with larger effects under polluted conditions
- Pollution aerosols (CCN) suppress precipitation by about 5% without dust, but when dust is present, CCN enhance precipitation

Modeling trans-pacific dust transport Pacific Northwest NATIONAL LABORATORY Proudly Operated by Ballelle Since 1965

- What are the contributions from trans-pacific transport to total dust mass in the western US?
- Are more dust transported across the Pacific during ARs?
- Performed quasi-global WRF-Chem simulations for 2010-2014 at 1° horizontal resolution; nudging of winds to the GFS reanalysis

ARs statistics are reasonably simulated in Northwest

A typical trans-pacific transport event with an atmospheric river on January 19, 2012

Trans-pacific and AR contribution to total dust mass

Trans-pacific dust transport contributes more to total dust mass during AR days than the average, particularly in CA

Trans-pacific and AR contribution to dust in western US

Trans-pacific transport contributes more to total dust mass during AR than the average, particularly between 1 – 4 km in altitude

Trans-pacific contribution to total dust mass (October – March) Difference between AR and non-AR transpacific contribution to total dust mass (October – March)

Dust dominates aerosol mass at altitudes above 2 km

Proudly Operated by Battelle Since 1965

CCN and IN impacts on supercooled liquid Pacific Northwest and cloud phase

NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

An AR event during CalWater 2015

DOE ARM Aerial Facility (AAF)

Supercooled liquid in orographic clouds at -38°C

Proudly Operated by Battelle Since 1965

Long-range transported BC and OC

 Measurements of aerosol chemical composition, BC concentration, and light absorption suggest the presence of aerosols with low hygroscopicity

Summary

- Trans-pacific transport contributes > 70% of the total dust mass in central CA and PNW in the cold season
- On AR days, trans-pacific transport contributes even more to the total dust mass, particularly in CA and between 1 – 3 km in altitude
- On average, dust dominates the aerosol mass in the Pacific ocean above 2 km
- By altering the composition of CCN and IN, trans-pacific aerosols have important effects on clouds and precipitation associated with ARs
- However, the aerosol composition from trans-pacific transport is variable, and its differing impacts on precipitation need to be better understood