

Capturing Atmospheric Rivers: Alpha Jet Atmospheric eXperiment (AJAX) Flights in support of CalWater/El Nino Rapid Response 2016

Ju-Mee Ryoo¹, Laura Iraci¹, Warren Gore¹, Emma Yates¹, Josette Marrero¹, J. Ryan Spackman^{2,3}, Randall Dole³, and F. Marty Ralph⁴

1 NASA Ames Research Center, 2 Science and Technology Corporation,

3 NOAA/ESRL Physical Sciences Division, R/PSD2, 4 Center for Western Weather and Water Extremes, Scripps Institution of Oceanography

> International Atmospheric River Conference Scripps, La Jolla, CA August 8-11, 2016

Flight Objectives

To examine the characteristics of dynamics and thermodynamics during various stages of atmospheric rivers (ARs), which contribute to intense precipitation along the U.S. west coast.

- 1) Coastal Barrier Jet:
- Map out the structure of the barrier jet at varying altitudes and horizontal displacement from the coastal range during the early stages of an Atmospheric River (AR) event

2) Pollution transport:

 Long-range transport of pollution aerosols to the Central Valley and Bay Area

AJAX Platform & Payload

- Speed: 150 550 knts
- Range: ~1,200 miles, Ceiling: 40,000 ft
- Flight duration: ~ 2.25 hrs
- Payload: two wing pods, one centerline
- Lowest altitude: normally 1000 ft, but dictated by safety

Total 196 Science Flights (June 2011 – August 2016) Common Types:

- Vertical Profiles
- Boundary Layer Legs
- Downwind "Curtains"
- For ENRR 2015/2016, 3 flights were conducted (demonstration, weak AR, and moderate AR).

Atmospheric Sensors (Two wind pods)

Modified Picarro (2301-*m*) **measures CO₂ and CH₄** located in center- and tailsections of the wing-pod

Modified 2B technologies (model 205) **measures O₃ and Meteorological Measurement System (MMS)** located in the front/nose section of the wing-pod GSFC Compact Formaldehyde FluorescencE Experiment (COFFEE) **measures atmospheric HCHO** located in the center of the pod

AJAX Flight Tracks

Offshore Stacked Flight Plan

Stacked transects A-B are offset from single leg C-D by 10 nmi with C-D closer to and immediately offshore

(coordinated by J. Ryan Spackman)

Large scale characteristics

- F172 : October 7, 2015 (Pre-AR : benign condition)
- F176 : December 9, 2015 (weak AR)
- F181: March 10, 2016 (moderate AR, Coastal Barrier jet detected, Pollution transport)

Geopotential height at 850 hPa

Geopotential height at 500 hPa

weak-AR(Dec 9, 2015)

u-wind

AJAX data characteristics

AJAX Flight Tracks

AJAX Flight map of water vapor

AJAX Flight map of water vapor with MODIS Aqua image

AJAX vertically integrated water vapor transport

weak-AR

-123 8 -123 6 -123 4 -123 2

250

-124.2

-124

(Dec 9, 2015)

840

720

600

480

360

240

120

-120

-240 -360

0

-12

moderate-AR

(Mar 10, 2016)

(Oct 7, 2015)

-123 -122.8 -122.6 -122.4 -122.2

F176 (Dec 9, 2016)

F181 (Mar 10, 2016)

AJAX data characteristics (Barrier Jet structure)

moderate-AR (Mar 10, 2016)

Pollution transport

F181 CO₂

High concentration of CO₂

F181 CH4

1.91 1.905 1.9 1.895 1.895 1.895 1.885 1.885 1.87 1.865 1.865

1.91 1.905 1.9

1.895 1.89

1.885

1.88 1.875 (1.87 1.865 1.86

37.3

F181 O3

F181 H2O

1.6 1.4 1.2 0.8 0.6 0.4 0.2 0 H₂₀ (%v)

.6 .4 .2

0.8 0.6 0.4 0.2 0

H₂₀ (%v)

moderate-AR (Mar 10, 2016) water vapor 70 Moderate-AR (Mar 10, 2016) Mater vapor 70 Moderate-AR (AJAX flight launched on Mar 10, 21 UTC) Black Carbon

20160307 - 0 hrs moderate-AR 700 hPa (AJAX flight launched on Mar 10, 21 UTC) Black Carbon (Mar 10, 2016) water vapor 60 60 1.250 50 9 40 40 \mathbf{O} 30 30 4.5 g Kg⁻¹ 20 20

-100

-50

150

Zoom in the western U.S.

100

50

0

Black Carbon [x 10¹¹ Kg Kg⁻¹]

8

20160307 - 0 hrs

moderate-AR

700 hPa

(AJAX flight launched on Mar 10, 21 UTC) ozone

Summary and Future plan

- This study will highlight the value of capturing the thermodynamic preconditions and features of real-time AR events using a coastal-based aircraft.
- Weak AR (December 9, 2015)
- I. Stronger Water vapor flux is observed in the lower altitude (500 m)
- Moderate AR (March 10, 2016)
- i. Low Let Jet developed and coastal Barrier jet started to develop => coastlineparallel flow was detected in the lowest altitude
- ii. The coastal mountains appear to contribute to AR moistening & deepening
- iii. Long-range pollution aerosol transport to the N. California is captured.
- More detailed analysis will be done to understand the interaction between large scale dynamics, Barrier jet, aerosol and orographic precipitation processes through multi-platform analyses

The AJAX Team

Contact Information:

(laura.t.lraci@nasa.gov)

(ju-mee.ryoo@nasa.gov)

Laura Iraci

Ju-Mee Ryoo

@NASAAJAX

Laura Iraci (PI)
Warren Gore
Emma Yates
Ju-Mee Ryoo
Josette Marrero
Erica Burrows (SJSU)
Emmett Quigley
Matthew Johnson
Susan Kulawik
Pat Hamill
Zion Young, Roy Vogler, Peter Tong
Pilots & Crew of H211, LLC

Find out more:

http://geo.arc.nasa.gov/ajax/ajax_index.html Project Highlights: http://youtu.be/ZtGQLrkepes August 2014 Seminar: https://www.youtube.com/watch?v=rjxNZ3CwCFE Catch us at the opening of the Showtime Documentary http://yearsoflivingdangerously.com/

Follow us in-flight: http://airbornescience.nasa.gov/tracker/

