Rivers in the Sky

Ein atmospharischer Fluss ist ein relativ schmales und tausende Kilometer langes
Forderband filr feuchte Luft, das 15-mal so viel Wasser wie der
Mississippi mit sich filhrt. Bei Erreichen der Kiiste
entstehen tage- oder wochenlang andal

emde Unwetter mit enormen

Niederschlags-

Rivers
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Landscape determinants
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Regional characteristics
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Key AR impacts

* Floods

Global survey

* Droughts

California droughts example

* Landslides & debris flows
Oakley et al will be talking about this

e Glacial & ice-cap mass

balances

Gorodetskaya & Mattingly have spoken
about this

* Snow abundance &

rain-on-snow
Guan, GRL 2016
Huning et al will be talking about this

* Avalanches
Hatchett et al will be talking about this

Erosion & geomorphic fx
Groundwater recharge

Mojave example

Significant water resources

Western US example

Strong winds
Small will be talking about this

Estuarine variability

X2 example

Vegetation variations &

wildfire
Albano et al will be talking about this

Fisheries

FIRO has been discussed several times

Oceanic fx?



F I O O d S (examples from the literature)

* New Zealand: Kingston et al. 2016

» Australia/Tasmania: Stuart, this conf

* Hawaii (Kauai): Neiman et al. 2014

e (California: e.g., Ralph et al. 2006

 Washington: Neiman et al. 2011

* Tennessee: Moore et al. 2012

* lowa: Nayak et al. 2016

* Alaska: Jacobs, this conference

* Canada, Brit Columbia/Alberta/Eastern
Maritimes: Assorted, this conf

* Maexico: Bosart et al, this conf, in press

e Chile: Viale, 2014

* Greenland: Neff et al. 2014; Mattingly, this Qonf

* Western Europe: Lavers & Villarini 2013

* UK: Lavers et al. 2012

e lberia: Trigo et al. 2014 -

* [taly: Malguzzi et al. 2006; Lang et al. 2012

* Greece: Mita et al. 2014




ARs & West Coast floods

* ALL 7 major floods of Russian River since m

Russian River fIOOdS’ 1997 have been atmospheric rivers (Ralph et al,
1948-2011 GRL, 2006)

* On alonger time scale, among all 39
“declared” floods of the Russian River

from 1948-2011...
87% were caused by ARs

(Dettinger & Ingram, SciAm, 2013)

AR fed
(34/39) * On lee side of Sierra Nevada, 74% of

major floods of Truckee River have
been caused by ARs

ARs hit Central California * In Washington, 46 of 48 (96%!) annual
~8 days per year peak daily flows have been associated
with ARs (Neiman et al, JHM, 2011)
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CONTRIBUTIONS FROM ARs TO PRECIPITATION
& STREAMFLOW = Water Resources

C
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Rutz et al., MWR, 2014;
Dettinger et al., Water, 2011




Central Valley levee breafs'/
1951-2006 @ ,:

Sacramento/San Joaquin Basin Levee Breaks
1951-2006
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amse AR

Number of Breaks

Percent of Pineannle
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During the times of year when ARs make California landfalls, they
are THE mechanism behind historical levee breaks.

Florsheim & Dettinger,

USGS C N AP ¢ Snd Watar Extromen chapter, 2015; Florsheim &
V) Dettinger, GRL, 2007
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Flows > 1000 cfs Flows > 5000 cfs
for > 3 days for > 1 day

Atmospheric

4 of 7 such episodes

but when it flows; l’f’refcbarge;
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4 of 6 such episodes

Figure 6. Gaging station 10262500, Mojave River at Barstow, January 18, 1993. (Discharge about
4,200 cubic feet per second.)




AR as US West Coast drought makers

CAUSES OF LASTING DROUGHT BREAKS
ALONG THE US WEST COAST

Washington

Northerrn Calif
Water-Year Precipitation, Delta Catchment

[with contributions from days <95%-ile, >95%-ile]
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mospheric Rivers & Estuarine Health: X2
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Atm OSpheriC Rive rS & X2 . Distance from Golden Gate Bridge

to where near-bottom salinity drops to 2 %o

4723 othelr

G e 83% of largest (daily-scale,

>0.85 km) X2 retreats
freshening the estuary,

19/23 caused by AR | WY1997-2010, have been
due to atmospheric-river
storms
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Ecologically Valuable Floodplain

*
Inundations, 55 yrs of Yolo Bypass inundations

Yolo Bypass Floodplain
Inundations of Various Durations, WY1956-WY2010
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Warm AR storms in a snowy setting

Of 38 days with Tmin > 02C & Precipitation >5 cm
at Tahoe City, WY1948-2010

m AR
™ Not AR

All such days

Number of Days

AR days among them

Oct Nov Dec Jan Feb Mar Apr May Jun Jul

Dettinger et al, Tahoe-book chapter, in prep

Center for Western Weather
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98-yr of daily Streamflows of the
Merced River, Sierra Nevada, CA
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7/ 10 top floods have been due to
atmospheric rivers




Lake Tahoe: ARs & sediment transport
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Upper Truckee River at South Lake Tahoe, 1971-1992

e 12% of all sediments from
UTR into Lake Tahoe were
delivered on 0.6% (36) of the days.

Upper Truckee River at South Lake Tahoe, CA (1971-1992)

Daily Suspended Sediment Loads
from Upper Truckee River

Discharge, in cfs

Total sediment transports by 36
high-load vs other days, and by AR
high-load vs other high-load days

er High Loads

All other days

Dettinger et al, Tahoe-book
chapter, in prep




WINTER ARs & SUMMER TAHOE
CLARITY

Water Year Precipitation, Tahoe-Reno-Carson
[with contributions from days and >95%-ile]
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What determines intensity,
storm/seaonal totals, distribution &
iImpacts of AR precipitationg

 Number of landfalls per year

* Vapor transport onshore & cross-topograp
Wind speed & vapor content in low level jet

* Dynamic, convective & orographic uplift

* Duration of AR passage overhead
Mesoscale frontal waves

e Altitude of AR core
Sierra Nevada spillover (Backes et al, JHM, 2015)

 Temperature of AR
Snowline altitude

 Closeness to saturation HH"#:-*'
How much uplift before precipitation begins R-CAT 1 EUCI <P <300 rr_l

* Stability of atmosphere o R-CAT 2: 300 < P < 400 mm

How readily is AR lifted by orography
o R-CAT 3: 400 < P <500 mm

* Presence/absence of resulting barrier jet
e R-CAT 4: P > 500 mm




Land conditions that determine AR
iImpacts

)
* Topographic slopes and orientations ?\Sxo““
Neiman example (d'\“q 2
* Rain shadowing (e
Anderson example

e Elevation and temperatures 4

 Antecedent soil moisture or snow cover conditions
Ralph example

. mS
* Bedrock and soils ?\5’&0(
* Land uses d\,s-\g&o g
* Drainage patterns and geometries 0 o0©
* Vegetation types and densities G

';--!J Center for Western Weather
ﬁ ( and Water Extremes
cal ATUCS, co
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AR impacts

Floods
Droughts
Landslides & debris flows

Glacial & ice-cap mass
balances

Snhow abundance &
rain-on-snow

Avalanches

Erosion & geomorphic fx

Groundwater recharge
Water resources
Strong winds
Estuarine variability

Vegetation variations &
wildfire

Fisheries

Oceanic fx?



Why do landfalling ARs yield heavy rain?
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Pre-cold-frontal low-level jet
(warm, moist)

Along-  Moist Wind

river  stability  speed Coastal

flux A mtns. AI

Center for Western Weather
d Wate Extremes
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» Composite sounding located
500 km off CA coast in pre-
cold-frontal Lowlevel Jet
(atmospheric river)

> LL Jet directed toward coast
and situated at 1-2 km MSL,
wind speeds 15 to 20 m/s

» Most (75%) of pre-cold-

frontal along-river moisture
flux is below 2.5 km MSL

» Vapor transport ~ 10-20

Mississippis

> Moist neutral stratification

below 2.8 km MSL, hence
no resistance to orographlc
lifting

» Overlapping set of

conditions very conducive
to orographic rain
enhancement in coastal
mtns & Sierra Nevada

Ralph et al. (2004, 2005) MWR



ROLE OF ELEVATION OF AR CORE
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Things get complicated

around mountains

High-resolution rain shadowing

Mountain Barrier Jets

San Francisco
No Flooding
FLOODING!

Santa Cruz
Mtns

A219

1224 A22
Ralph et al., MWR, 2003

- _5 Center for Western Weather
“ (’ and Water Extremes
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(a) Plan view perspective

Neiman et al., MWR, 2013




Orientations of Catchments (relative to AR approach)
Matters to Precipitation Intensities & Locations

Neiman et al, JHM 2011

Based on top-10 annual peak daily flows
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Key AR impacts

* Floods

Global survey

* Droughts

California droughts example

* Landslides & debris flows
Oakley et al will be talking about this

e Glacial & ice-cap mass

balances

Gorodetskaya & Mattingly have spoken
about this

e Show abundance &
rain-on-snow

Guan example
Huning et al will be talking about this

* Avalanches
Hatchett et al will be talking about this

Erosion & geomorphic fx
Groundwater recharge

Mojave example

Significant water resources

Western US example

Strong winds
Small will be talking about this

Estuarine variability

X2 example

Vegetation variations &

wildfire
Albano et al will be talking about this

Fisheries

FIRO has been discussed several times

Oceanic fx?



Sudden changes in Lake Tahoe clarity

Largest Measurement-to-Measurement Changes
in Lake Clarity, WY1968-2011 (>10 m!)

Of 15 occasions with largest msmt-msmt CLARITY INCREASES,
ALL 15 were preceded by stormy conditions, and...

11/15 were
73% ARs preceded by ARs.

Dettinger et al, Tahoe-book
chapter, in prep

USGS
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