Mid-Latitude Dynamics and Atmospheric Rivers

Session: Theory, Structure, Processes 1 Wednesday, 10 August 2016 Jason M. Cordeira Plymouth State University, CW3E/Scripps

2016 International Atmospheric Rivers Conference 8–11 August 2016 Scripps Institution of Oceanography

Objective and Outline

Objective

• What components of midlatitude circulation support formation and structure of atmospheric rivers?

Outline

- Part 1: ARs, midlatitude storm track, and cyclogenesis
- Part 2: ARs, tropical moisture exports, and warm conveyor belt

Objective and Outline

Objective

• What components of midlatitude circulation support formation and structure of atmospheric rivers?

Outline

- Part 1: ARs, midlatitude storm track, and cyclogenesis
- Part 2: ARs, tropical moisture exports, and warm conveyor belt

Mimic TPW (SSEC/Wisconsin)

- Global water vapor distribution is concentrated at lower latitudes owing to warmer temperatures
- Observations illustrate poleward extrusions of water vapor along "tropospheric rivers" or "atmospheric rivers"

Zhu and Newell (MWR-1998)

- >90% of meridional water vapor transports occurs along ARs
- ARs part of midlatitude cyclones and move with storm track

Climatology of Water Vapor Transport

Global mean IVT

30 60 90 120 150 180 210 240 270 300 330 360 390 420

- ECMWF ERA Interim Reanalysis
- Oct–Mar 99/00 to 08/09 (i.e., ten winters)
- IVT calculated for isobaric layers between 1000 and 100 hPa

Tropical-Extratropical Interactions

Knippertz (2005-MWR)

Case study 345-k streamlines and isotachs for lowlatitude trough over eastern North Atlantic

- Initiation of water vapor transport along ARs linked to occurrences of upper-tropospheric troughs at lower latitudes, changes in static stability, and downstream southerly flow
- TCs may also contribute to poleward heat/moisture flux

• Upper-level disturbance (X) embedded within a Rossby wave initiates cyclogenesis → southerly flow aids in development of poleward water vapor transport

- Upper-level disturbance (X) embedded within a Rossby wave initiates cyclogenesis → southerly flow aids in development of poleward water vapor transport
- Diabatic processes contribute to modification of Rossby wave structure that favors further cyclogenesis, stronger cyclone, additional poleward water vapor transport

- Upper-level disturbance (X) embedded within a Rossby wave initiates cyclogenesis → southerly flow aids in development of poleward water vapor transport
- Diabatic processes contribute to modification of Rossby wave structure that favors further cyclogenesis, stronger cyclone, additional poleward water vapor transport
- Frontogenesis along frontal features favors aggregation of water vapor

- Upper-level disturbance (X) embedded within a Rossby wave initiates cyclogenesis → southerly flow aids in development of poleward water vapor transport
- Diabatic processes contribute to modification of Rossby wave structure that favors further cyclogenesis, stronger cyclone, additional poleward water vapor transport
- Frontogenesis along frontal features favors aggregation of water vapor

Ralph et al. (2004-MWR, 2005-MWR, 2006-GRL)

- ARs situated near leading edge of cyclone cold front
- 75% of water vapor flux occurs below 2.25 km near LLJ

- AR resembles tropical moisture export (TME)
- Located in region of warm conveyor belt (WCB)
- 3D kinematic and thermodynamic processes involved in simultaneously maintaining/removin g IWV

Image adapted from Carlson (1980)

- Negative contribution (IWV removal):
 Frontal circulations and isentropic ascent are regions of vertical motion that favor removal of IWV
- **Positive contribution (IWV maintenance):** Kinematic frontogenesis may lead to water vapor flux convergence, evaporation into dry air on back edge

Can offset

Cordeira et al. (2013-MWR)

Fig. 6a,b from Sodemann and Stohl (2013, MWR): Moisture origin and meridional transport in atmospheric rivers and their association with multiple cyclones

Summary provided by Sodemann and Stohl (2013-MWR)

- 1. Formation of ARs tightly coupled to circulation at tropopause level
- 2. Individual cyclones contribute to formation and maintenance of ARs at trailing end by adding moisture accumulated at their cold fronts
- 3. Cyclones use a part of ARs as a reservoir to feed their WCB
- 4. Individual ARs maintained or depleted by several cyclones in sequence

Objective and Outline

Objective

• What components of midlatitude circulation support formation and structure of atmospheric rivers?

Outline

- Part 1: ARs, midlatitude storm track, and cyclogenesis
- Part 2: ARs, tropical moisture exports, and warm conveyor belt

- Can we quantitatively identify spatial correspondence between ARs, TMEs, and WCB?
- How are these three processes related?
- How can we rectify the difference between Lagrangian and Eulerian perspectives?

Image adapted from Carlson (1980)

Lagrangian definitions of air parcel characteristics

- TMEs related to water vapor transport out of tropics
- WCBs related to ascent of air parcels in cyclone warm sector

Methodology

• Define an AR based on threshold values of IVT and IWV

Methodology

- 357 points identified on grid in AR conditions with IVT>250 kg $m^{-1}\ s^{-1}$ and IWV>20 mm

54%	27%	14%	4%
Neither	TME	WCB	BOTH

54%	27%	14%	4%
Neither	TME	WCB	BOTH

Average DJF Frequency

• Next step: Identify geographic coverage and spatial overlap of AR, TMEs, and WCBs

• Percentage of area poleward of 20°N that is on average covered by ARs, TMEs, and WCBs only

- ARs are relatively "small" spatial features on a global scale (~6%)
- ~50% of spatial area defined as an AR also TME
- ~25% of spatial area defined as AR also part of WCB
- Note that using thresholds of IVT=250 kg m⁻¹ s⁻¹ and IWV=20 mm resulted in a null overlap of 40%

Summary

- ARs result from poleward water vapor transport that may develop in concert with changes in midlatitude storm track and cyclogenesis
- ARs propagate as storm track and cyclones evolve, contributing water vapor to dynamical processes
- ARs are terminated in presence of moist ascent/precipitation, but may be sustained in presence water vapor flux convergence and evaporation
- TMEs comprise a large portion of some ARs, whereas WCBs comprise a small portion of some ARs
- TMEs may give rise to [some] ARs, whereas WCBs lead to their demise