

## Projections of Climate Change Effects on Atmospheric Rivers and Their Landfalls A Global Perspective

### V. Espinoza<sup>1</sup>, D. Waliser<sup>2,3</sup>, B. Guan<sup>2,4</sup>, D. Lavers<sup>5</sup>

<sup>1</sup>Sonny Astani Civil & Environmental Engineering Dept, USC, Los Angeles, CA
<sup>2</sup>Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA
<sup>3</sup>Center for Western Weather and Water Extremes, UCSD, San Diego, CA
<sup>4</sup>Joint Institute for Regional Earth System Science and Engineering, UCLA, Los Angeles, CA
<sup>5</sup>European Centre for Medium-Range Weather Forecasts, Reading, UK

International Atmospheric River Conference La Jolla, CA August 8-11, 2016

## **Atmospheric Rivers Affects**

- Global Climate
- Water Availability
- Extreme Precipitation and Floods

## **Projections of Global Warming Indicate Significant Changes to:**

- Global Water Cycle
- Global Energy Cycle
- Atmosphere/Ocean Circulation
- Extreme Events
- Etc.





## Climate Projection Studies Of Atmospheric Rivers To Date Have Mainly Focused On Two Regions



# The Impacts Of Climate Change On "Atmospheric Rivers" Across The Globe Has Yet To Be Examined

## Using a Global Perspective, We Examine The Impacts Of Global Change On



Atmospheric River Frequency & Intensity

Atmospheric River Landfall Occurrences

## Approach



Guan & Waliser (2015)

Global Detection Algorithm

Identifies ARs, frequency, transports and landfalls





Lavers et al. (2015)

CMIP5 Analysis of IVT Climate Changes for 21 CMIP5 Models

IVT increases by 30– 40% in the North Pacific and North Atlantic storm tracks for RCP8.5 Global Evaluation of Climate Change Impacts on ARs

?



#### Example Result for GFDL CM3 GCM (Annual Means)

#### North Pacific Ocean

Historical: ~40 AR Days/Yr RCP4.5: ~60 AR Days/Yr RCP8.5: ~70 AR Days/Yr

**Southern Ocean** 

Historical: ~40 AR Days/Yr RCP4.5: ~65 AR Days/Yr RCP8.5: ~85 AR Days/Yr



## **Atmospheric River Frequency: RCP8.5 – Historical**



A few models don't accentuate the S. Ocean, or exhibit as great of negative values/areas.

#### **Atmospheric River Frequency Changes** Multi-Model Means Average $\Delta$ **AR Days/Year** 50 Average∆ of 21 CMIP5 Models (RCP4.5 - Historical) 45 40 RCP4.5 - Historical 35 30 Extra-tropics Increase 25 S. Ocean Increases Most W135° W90 W459 E45° E90° E135° E180 W180 0° Average $\Delta$ of CMIP5 Models (RCP8.5 - Historical) Tropics/S. America Decrease 20 15 N45 10 RCP8.5 - Historical 5 0 -5

۲

<sup>9°</sup> W180° W135° W90° W45° 0° E45° E90° E135° E180

#### **Global AR Landfall/Year Defined By AR Detection Algorithm**



# Landfall/Year Changes for GFDL CM3 GCM (Annual Means)



## Summary

AR global detection algorithm applied to 21 CMIP5 model simulations to quantify global changes in AR frequency and landfalls in RCP4.5 and RCP8.5 global change projections.

- Largest projected increases in AR conditions over mid-latitudes (+20-30 days/year, +50%), with greatest increases over the southern ocean (+30-45 days/year; +100%), with the latter likely due to both thermodynamic and dynamic effects.
- Zero to small decreases in AR conditions (-5 days/year; -10%) in some tropical/subtropical areas (e.g. west of S. America).
- Preliminary examination of changes in landfalling ARs for the GFDL CM3 model show sizable % increases (~30-50% or more) in regions where AR events are common (e.g. western N. America, S. South America).

## **Future Work**

- Complete AR landfall analysis
- Quantify changes in AR IVT values

## Thank you!



### Jet Propulsion Laboratory

California Institute of Technology

jpl.nasa.gov

espinoza.vicky@jpl.nasa.gov