Stable isotope constraints on post-condensation processes and precipitation efficiency during the March 5-7, 2016 atmospheric river event

Hari Mix Sean Reilly, Andrew Martin and Gavin Cornwell IARC 2018

UC San Diege

At a glance:

- Stable isotopes as natural tracers in the hydrologic cycle
- Competing explanations for stable isotope time series in ARs
- Disentangling rainout and post-condensation processes in the March 5-7, 2016 AR

Many natural processes prefer one isotope over another "Isotopic Fractionation"

Isotope ratios record the progressive rainout of moisture: "Rayleigh distillation"

First study using stable isotopes was a small landfalling AR in 2005

 δD decreases then increases dramatically

Coplen argued V shape represents changing rainout efficiency

But this interpretation doesn't match meteorological structure of storm and ignores the potential role of post-condensation processes

- RH < 1
- Increases δprecip
- Usually lowers δ vapor
- Decreases d-excess of precip and increases d-excess of vapor

• RH ≈ 1

- δprecip approaches equilibrium with vapor
- Usually lowers δ vapor

Yoshimura et al., (2010) revisited the 2005 AR with an isotope-tracking GCM

Yoshimura et al.,

Aemisegger et al., 2015: V shapes in European cold fronts linked to below-cloud evaporation

Potential mechanisms for V-shape: Which one is right?

	Initial enrichment phase	Depletion phase	Rebound phase
Coplen et al., 2008	Warm shallow precip Low degree of rainout	Deeper cloud, seeder-feeder mechanism and more efficient rainout	Warm, shallow locally-generated orographic rain
Yoshimura et al., 2010	Below-cloud evaporation	Below-cloud evaporation shuts off	Warm shallow moisture advects in from AR core

We sampled hourly precip and vapor in ARs at a network of sites:

Laser absorption spectroscopy allows us to measure isotope composition of water and water vapor

0 UTC 3/5/16: A strong AR makes

1800 UTC 3/5/16: 500 kg/m/s IVT

0 UTC 3/6/16: Peak AR conditions, 956 kg/m/s

0600 UTC 3/7/16: A secondary system makes

1. March 5-7 AR event exhibits an asymmetrical V shape: Up to 45% rainout in peak AR conditions

V shape corresponds to period of greatest rainout

2. V corresponds to greatest along-slope vapor fluxes when AR is lofted above barrier jet

3. Precipitation and vapor time series reveals varying degrees of disequilibrium

Differences in kinetic fractionation between oxygen and hydrogen give rise to *Deuterium*

ŝ

Deuterium excess as an indicator of below-cloud evaporation

ĝ

In summary:

1. March 5-7, 2016 AR exhibits a characteristic V shape Precedes cold front passage Coincides with barrier jet phase of the AR, suggests that this meteorological structure promotes most efficient rainout (over 45%) 2. Post-condensation processes are evident, particularly in drizzly times: Below cloud evaporation is responsible for rebound of V after passage of AR core At end of 2nd storm, possible kinetic isotope exchange Precipitation and water vapor isotopes can be used to constrain rainout fraction and reveal microphysical processes in future events

Thank you! Questions?

Additional thanks: Ayesha Ahmed, Matthew Fogarty and Brian Kawzenuk