Impact of local versus long range transported aerosols on California clouds and precipitation

Kimberly A. Prather, Distinguished Professor UC San Diego June 27, 2018

CalWater (2009 - present)

<u>Goal</u>: To better understand the impacts of specific sources of aerosols on cloud microphysics and precipitation processes

- Identify sources of aerosols seeding clouds
 - Precipitation and in-situ residual composition
- Link specific aerosol chemistry/sources with observed changes in cloud microphysics

Timing and Locations

- Sierra Nevada Range in California (2009-2015)
- Coastal locations: Bodega Bay and Cazadero (2015-present)

Satellite

In-situ DOE-G1 measurements

Orographic Precipitation in California

Rosenfeld et al., JGR, 2008 (SUPRECIP-2005) Ault, et al., JGR, 2011; Creamean et al., Environ. Sci. Technol., 2011; Creamean, et al., Science, 2013. Do we see evidence of specific aerosol sources impacting AR's over California?

Increasing AR strength and duration

Ralph et al. 2013, J. Hydrometeorology

CalWater (2009)

<u>A Tale of Two Storms</u>

Produced 23% of annual precipitation and 38% of CA snowpack

Back to Back: Storms 1 and 2

- Storm 1 seeded by pollution
- Storm 2 seeded by dust + bioparticles
- Storm 2 produced 40% more rain and 60% more snow

Ault et al. JGR 2011

How are dust/bio aerosols affecting precipitation? CalWater-2011

ATOFMS: In-situ measurements of aerosol sources of ice and cloud condensation nuclei

Prather et al, Anal. Chem., 1994; Gard et al, Anal. Chem., 1997; Pratt, et al. A. Chem, 2009.

CalWater (February 16, 2011) Liquid Water (CDP)

- Dust/bio occur at same altitude as ice in clouds
- CFDC IN concentrations peak
- Is ice due to colder temps or due to composition of aerosol cloud seeds?
- Supercooled liquid exists at highest altitude above dust/bio layer—thus, it appears dust/bio playing key role in ice formation

dust and bioparticles experienced extensive snowfall

Aerosol Sources: Vision for CalWater-2015

CalWater 2015: Jan 22nd (RF1)

Aerosol Sources Seeding AR's: Calwater-2011 and 2015

CalWater-2015: Aerosols seeding ARs completely de-coupled from Central Valley pollution aerosols (which remain trapped in boundary layer)

Rosenfeld et al., JGR, 2008 (SUPRECIP-2005) Ault, et al., JGR, 2011; Creamean et al., Environ. Sci. Technol., 2011; Creamean, et al., Science, 2013.

What are the important sources of CCN and IN during Atmospheric Rivers?

Aerosol sources seeding AR's during 2011 and 2015 very different

<u>2011</u>

Long range transported dust + bioparticles seed AR storms Local CA pollution does not go into clouds until post-frontal conditions

Aerosols affect precipitation efficiency by forming ice in clouds (enhance)

<u>2015</u>

Warm band of moisture from AR caps local pollution aerosols, preventing them from entering clouds

Biogenic ocean-sources (formed in clouds) play important role in seeding clouds Local CA pollution does not go into clouds until post-frontal conditions

> Long range transport (dust + pollution) and ocean sources are more prevalent sources at higher altitudes Meteorological conditions (AR) control <u>when and which</u> aerosol sources seed clouds

How important is the ocean as a source of CCN and IN?

The Living Ocean: One drop of seawater contains hundreds of millions of viruses, bacteria, phytoplankton, proteins, lipids, even enzymes.... all enriched at ocean surface in thin microlayer

Phytoplankton and Zooplankton	
	Dinoflagellate
Coccolithophorid	Diatom

NSF Center for Aerosol Impacts on Chemistry of the Environment (CAICE) Center for Chemical Innovation

UC San Diego

To transform our ability to accurately predict the impact of aerosols on climate and our environment by bringing real-world chemical complexity into the laboratory

Center for Aerosol Impacts on Chemistry of the Environment

CAICE: Ocean/Atmosphere Studies How important is the ocean as a source of CCN and IN?

CAICE wave flume vs. CalWater cloud seeds Linking sea spray aerosol chemical fingerprints

Aerosol sources seeding AR's during 2011 and 2015 very different

2011

Long range transported dust + bioparticles seed AR storms

Aerosols can affect precipitation efficiency by forming ice in clouds (enhance) or over-seeding clouds (suppression)

<u>2015</u>

Warm layer from AR conditions caps local Central Valley pollution aerosols and prevents it from entering clouds Biogenic ocean-sources (formed in clouds) play important role in seeding clouds

Meteorology conditions of AR impact aerosols which seed clouds (LRT and ocean sources more important at higher altitudes)

Next steps:

Use parameterizations as inputs for CalWater dust (2011) and CAICE ocean-derived particles (2015) in climate models (w/ Paul DeMott (CSU) and Ruby Leung, PNNL) to investigate precipitation impacts.

Investigate longer term trends in frequency of long range dust transport to the West Coast in Jan-March (w/ Amato Evan and Kara Voss, SIO).

Acknowledgements

California Energy Commission (2009-2014)—Guido Franco National Science Foundation (2015-present)

Marty Ralph (UCSD/SIO) Andrew Martin (UCSD/SIO) Ruby Leung (PNNL) Danny Rosenfeld (Hebrew University) Paul DeMott (CSU)

Former and Current Prather Group Members: Prof. Doug Collins (Bucknell) Dr. Jack Cahill (ORNL) Dr. Jessie Creamean (CSU) Prof. Andy Ault (U Michigan) Dr. Kaitlyn Suski (PNNL) Dolan Lucero (UCSD) Kathryn Mayer (UCSD) Kara Voss (UCSD/SIO) Hash Al-Mashat

Gavin Cornwell Dr. Louise Kristensen UCSD UCSD

Eastern Pacific Ocean AOD vs. California Rainfall 2001-2014 (Jan-March)

Amato Evan (SIO/UCSD)

CalWater (February 16, 2011) Cloud Residual Composition

CalWater (February 16, 2011) Ice Fraction (WCM)

• Dust/bio appear at same altitude as ice in clouds

CFDC IN concentrations peak

• Is ice due to colder temps or due to composition of aerosol cloud seeds?