The Atmospheric River Tracking Method Intercomparison Project (ARTMIP): Quantifying the Uncertainties in Atmospheric River Climatology and Impacts

Jon Rutz – June 26th, 2018

Acknowledgements: Christine Shields, Juan Lora, Ashley Payne ARTMIP Committee, ARTMIP Participants

Why ARTMIP?

Atmospheric river (AR) science has taken off in recent years. Dozens of AR identification and tracking methods are in use by researchers and documented in peer-reviewed journals.

Parameter	Computation	Geometry	Threshold	Temporal	Regions
Type	Type	Requirements	Requirements	Requirements	(Examples)
Parameters Choices	Condition If conditions are met, then AR exists for each time instance at each grid point. This counts time slices at a specific grid point. Tracking Lagrangian approach: if conditions are met, AR object is defined and followed across time and space.	Length Width Shape Axis or Orientation	Absolute Value is explicitly defined. Relative Value is computed based on anomaly or statistic. No thresholds (object only)	Time slice Consecutive time slices can be counted to compute AR duration, but it is not required to identify an AR. Time stitching Coherent AR object is followed through time as a part of the algorithm.	Global North Pacific Landfalling North Atlantic Landfalling Southeast U.S. South America Polar

Why ARTMIP?

Different methods result in some methods identifying ARs at specific geographic locations and observation times, whereas other methods do not. This results in uncertainty regarding the AR climatology (e.g., frequency, duration, intensity, seasonality), and how it relates to precipitation and water supply.

Why ARTMIP?

The methods used to identify and track ARs greatly affect how precipitation is attributed to ARs. Given their role in high-impact weather and hydroclimate, it is critical to understand how AR-related contributions to precipitation will change in the future.

ARTMIP exists to quantify the uncertainty in AR climatology, the relationship between ARs and precipitation, and how these may change in the future. ARTMIP also aims to offer recommendations regarding which methods are best suited to answer which questions.

Key AR Metrics

- The ARTMIP "Tier 1" Analysis is focused on quantifying the uncertainties in a few key metrics that arise as a result of different AR identification and tracking methods...
 - AR Frequency
 - AR Duration / Method Overlap
 - AR Seasonality
 - AR Intensity / Efficiency
 - AR-Related Precipitation (*not yet done*)

Counts at coastlines

Avg storm duration (min=12hr) at coastlines

Avg storm duration (min=12hr) at coastlines

AR Method "Overlap"

AR Method "Overlap"

of Methods that Agree on Max Month

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Meridional (Poleward) IVT

Zonally-averaged meridional IVT within ARs

- Maximized at mid-latitudes (~30-50° N/S)
- Larger (smaller) for absolute (relative) methods
- Larger (smaller) for less (more) restrictive methods

Zonal (Eastward) IVT

Zonally-averaged zonal IVT within ARs

- Maximized at mid-latitudes (~30-50° N/S)
- Larger (smaller) for absolute (relative) methods
- Larger (smaller) for less (more) restrictive methods

AR Spatial Area

Zonally-averaged spatial area of ARs

- Maximized at mid-latitudes (\sim 30-50° N/S), but variable with method
- Larger (smaller) dependence on latitude for absolute (relative) methods

Meridional IVT "Efficiency" (vIVT / Area)

Zonally-averaged meridional IVT "efficiency" (vIVT / area) of ARs

- Maximized at high latitudes (~ > 60° N/S), but variable with method
- Larger at high (low) latitudes for absolute (relative) methods
- Larger (smaller) dependence on latitude for absolute (relative) methods

Meridional IVT "Efficiency" Spread

Zonally-averaged meridional IVT "efficiency" (vIVT / area) of ARs

• Generally, more (less) restrictive methods are more (less) "efficient"... in other words, they don't include lower-intensity portions of storms that contribute less to transport

Summary

Results

- When normalized from 0 to 1, most methods show good agreement on AR frequency and duration along the West Coasts of North America and Europe
- Duration or seasonality
- Methods vary widely in AR spatial footprint, zonal and meridional water vapor transport, and "efficiency" of water vapor transport
- Key metrics for absolute (relative) methods generally exhibit larger (smaller) variation as a function of latitude

<u>To-Do List</u>

- Analyze, compare, and contrast precipitation fractions attributable to ARs as a function of different AR identification and tracking methods
- Begin writing "Tier 1" Summary Paper

ARTMIP Information

Co-chairs Jon Rutz, Christine Shields

Committee Ruby Leung, Marty Ralph, Michael Wehner

Data Management

Brian Kawzenuk, Paul Ullrich

Interest in ARTMIP?

Christine Shields: <u>shields@ucar.edu</u> Jon Rutz: <u>jonathan.rutz@noaa.gov</u>