Projected changes to California extreme precipitation accumulations from the CESM Large Ensemble

Jesse Norris

#### University of California, Los Angeles

**Collaborators: Gang Chen and David Neelin** 



### California floods 2017: accumulations >200 mm



### Motivation

- Extreme accumulations (100s of mm) projected to become more frequent in the 21st Century (Dwyer and O'Gorman 2017; Neelin et al. 2017).
- In a warmer climate, greater moisture levels imply greater precipitation intensity, according to Clausius–Clapeyron (Trenberth 1999; Allen and Ingram 2002).
- Dynamical forcing (Pfahl et al. 2017; Chen et al. 2018; Norris et al. 2018) and duration of events (Dwyer and O'Gorman 2017) may offset/enhance thermodynamic changes.
- 1. How much more frequent will major accumulations, e.g., the 10-year or 100-year events, become in California?
- 2. How will intensity and duration each change in the future?

# Enhanced frequency of large accumulations in a future climate



### **CESM Large Ensemble**

- Coupled atmosphere–ocean model
- Approx 1° grid spacing, 30 vertical levels
- ► 40 ensemble members for current climate (1990–2005) and late 21st Century (2071–2080)
- RCP8.5 forcing from 2006 onward (approx. 3 K warming by late 21st Century)
- 6-hourly output used to calculate accumulations

### Precipitation accumulations

- Time integration of consecutive precip rates >0.5 mm/h:  $A = \int_{t_{\text{start}}}^{t_{\text{end}}} P dt$
- Accumulation starts when P first exceeds 0.5 mm/h and ends when P first drops below 0.5 mm/h.
- Accumulation is equal to product of mean intensity and duration: A = ID

# Conditional mean accumulation as function of return period

- All 40 members aggregated to give data period of several 100 years.
- Accumulations binned according to return period: obtain the mean accumulation corresponding to the given return period.
- A<sup>e</sup> denotes the conditional mean accumulation for the e-year return period.
- ► Also calculate mean intensity and duration of events for a given return period: A<sup>e</sup> ≈ I<sup>e</sup>D<sup>e</sup>
- Analysis performed at each grid point for end-of-20th (E20) and end-of-21st (E21) Centuries separately.
- Significant changes at a given return period where 90% bootstrap replications agree on sign.
- Focus on California, i.e., frontal events.

# Greater accumulations over Norcal than Socal due to greater duration



#### Accumulations well represented compared to TRMM 3B42





### Accumulations well represented compared to TRMM 3B42



# Accumulations approx. equal to product of conditionally averaged duration and intensity



## Similarly for projected changes







# 100-year return: Projected changes to intensity negatively correlated with changes to duration





### Moisture budget

For extreme instantaneous precipitation (e.g., 99.9th percentile), precipitation rate is approximately equal to the vertical integral of moisture multiplied by mass convergence (Norris et al. 2018):

$$P = \sum_{k} q_k C_k$$

where  $q_k$  is vapor mixing ratio at the *k*th model level and  $C_k = -\frac{1}{g} \nabla \cdot (\mathbf{v}_k dp_k)$  is upward mass transport integrated over the *k*th model layer.

Hence to understand the change in intensity of large accumulations, we analyze the changes to the mean q and C profiles.

#### Moisture and convergence both increase with return period





# For 100-year return, convergence enhanced over Norcal and weakened over Socal



### Over Socal, 100-year return projected to occur approx. every 20 years in late 21st Century



### Summary

- Extreme accumulations (100s of mm) projected to become more frequent over California.
- Accumulations are greater over Norcal due to greater duration, but in the future the gap closes in duration of events, hence the gap closes in accumulation size.
- Changes to intensity negatively correlated with changes to duration — increasing duration is associated with weakening dynamical forcing.
- Reduced duration over Norcal leads to lower increases.
- Enhanced duration of large accumulations over Socal leads to particularly large increases — 100-year return becomes 5 times more frequent.
- Other models needed to confirm results.

#### References

- Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrological cycle. *Nature*, **419**, 224–232.
- Chen, G., J. Norris, J. D. Neelin, J. Lu, L. R. Leung, and K. Sakaguchi, 2018: Thermodynamic and dynamic mechanisms for hydrological cycle intensification over the full probability distribution of precipitation events. J. Atmos. Sci., in review.
- Dwyer, J. G., and P. A. O'Gorman, 2017: Changing duration and spatial extent of midlatitude precipitation extremes across different climates. *Geophys. Res. Lett.*, 44, 5863–5871.
- Neelin, J. D., S. Sahany, S. N. Stechmann, and D. N. Bernstein, 2017: Global warming precipitation accumulation increases above the current-climate cutoff scale. *Proc. Natl. Acad. Sci. USA*, **114** (6).
- Norris, J., G. Chen, and J. D. Neelin, 2018: Thermodynamic versus dynamic controls on extreme precipitation in a warming climate from the Community Earth System Model Large Ensemble. J. Climate, in review.
- Pfahl, S., P. A. O'Gorman, and E. M. Fischer, 2017: Understanding the regional pattern of projected future changes in extreme precipitation. *Nat. Clim. Change*, 7, 423–428.
- Trenberth, K. E., 1999: Conceptual framework for changes of extremes of the hydrological cycle with climate change. Clim. Change, 42, 327–339.

### Summary

- Extreme accumulations (100s of mm) projected to become more frequent over California.
- Accumulations are greater over Norcal due to greater duration, but in the future the gap closes in duration of events, hence the gap closes in accumulation size.
- Changes to intensity negatively correlated with changes to duration — increasing duration is associated with weakening dynamical forcing.
- Reduced duration over Norcal leads to lower increases.
- Enhanced duration of large accumulations over Socal leads to particularly large increases — 100-year return becomes 5 times more frequent.
- Other models needed to confirm results.