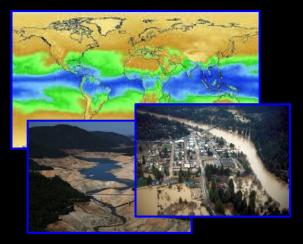


Global Analysis of Climate Change Projection Effects on Atmospheric Rivers

Vicky Espinoza^{1,2}, Duane Waliser², Bin Guan³, David Lavers⁴, Marty Ralph⁵

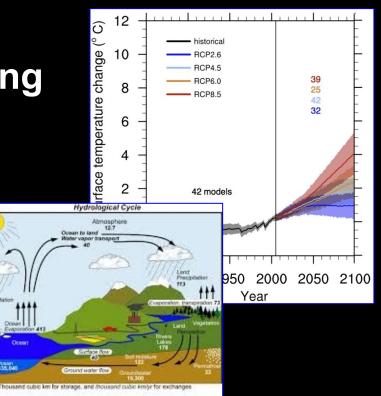

¹Civil and Environmental Engineering Department, University of Southern California, Los Angeles, CA
²Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA
³Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, CA
⁴European Centre for Medium-Range Weather Forecasts, Reading, UK,
⁵Center for Western Weather and Water Extremes, University of California, San Diego, CA, USA

Based on Espinoza, et al. GRL, 2018.

Support from the NASA Energy and Water Cycle Program

2ND IARC June 25-28, 2018

Atmospheric River Impacts

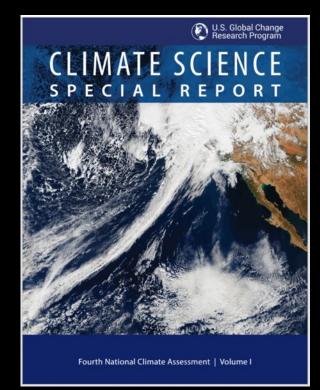

Global / Extra-tropical Climate & Variability

(Zhu & Newell, 1998; Guan & Waliser, 2015; Nash et al. 2018)

• Global Water Availability & Flood Risk (e.g. Ralph et al. 2006; Dettinger, 2013; Lavers et al. 2009; Paltan et al. 2017)

Projections of Global Warming Indicate Changes to:

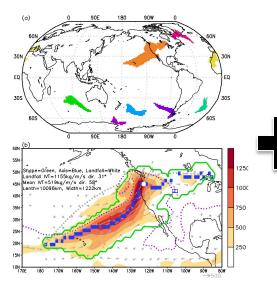
- Global Water & Energy Cycles
- Atmosphere/Ocean Circulation
- Extreme Events



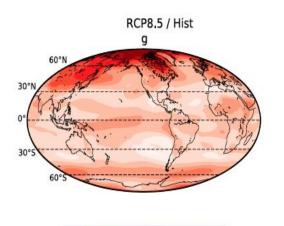
Climate Change & ARs

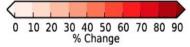
Previous Studies

Publication	Historical Period	Projection Period	Geographic Region	AR Freq (± %)	AR IVT (± %)	
Dettinger (2011)	1961-2000	2046 - 2065; 2081 - 2100	CA Coast	+ 30	+ 10	
Pierce et al. (2013)	1985 - 1994	2060s	CA Coast	+ 25 - 100		
Warner et al. (2015)	1970 – 1999	2070 - 2099	US West Coast	+ 230 - 290	+ 30	
Payne and Magnusdottir (2015)	1980 - 2005	2070 -2100	US West Coast	+ 23 - 35		
Gao et al. (2015)	1975 - 2004	2070 - 2099	US West Coast	+ 50 - 600		
Hagos et al. (2016)	1920 - 2005	2006 - 2099	US West Coast	+ 35		
Shields et al. (2016)	1960 - 2005	2055 - 2100	US West Coast	+ 8		
Espinoza et al. (2018, current study)	1979 - 2002	2073 - 2096	US West Coast	+ 45	+ 30	
Lavers et al. (2013)	1980 - 2005	2074 - 2099	W. Europe	+ 50 - 100		
Gao et al. (2016)	1975 - 2004	2070 - 2099	W. Europe	+ 127 - 275	+20 - 50	
Ramos et al. (2016)	1980 - 2005	2074 - 2099	Europe	+100 - 300	+ 30	
Shields et al. (2016)	1960 - 2005	2055 - 2100	North Atlantic	+ 4		
Espinoza et al. (2018, current study)	1979- 2002	2073-2096	W. Europe	+ 60	+ 30	


- No Global Studies
- No way to compare UK & US, different models, methods and algorithms
- What about outside UK & US?

CSSR Executive Summary: The frequency and severity of landfalling "atmospheric rivers" on the U.S. West Coast ... will increase as a result of increasing evaporation and resulting higher atmospheric water vapor that occurs with increasing temperature. (*Medium confidence*) (Ch. 9)


Methods, Models & Goal



Guan & Waliser (2015)

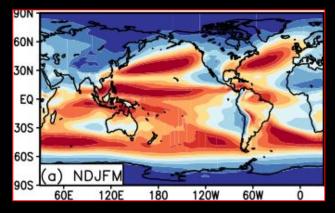
Global AR Detection Algorithm

Identifies ARs, frequency, transports and landfalls

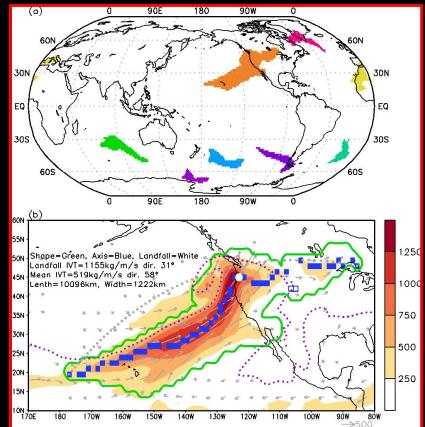
Lavers et al. (2015)

CMIP5 Analysis of IVT Climate Changes for 21 CMIP5 Models

IVT increases by 30–40% in the North Pacific and North Atlantic storm tracks for RCP8 5 Global Evaluation of Climate Change Impacts on ARs

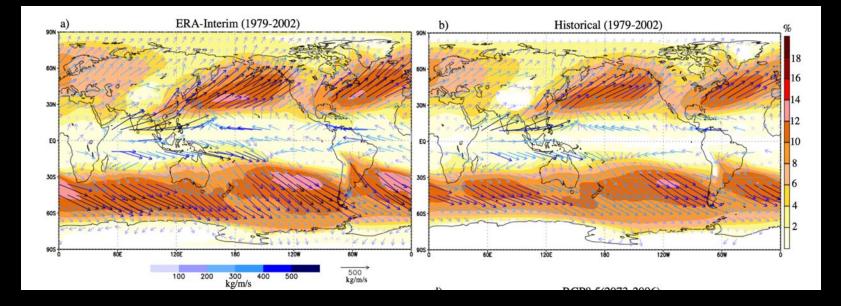

?

Jet Propulsion Laboratory California Institute of Technology

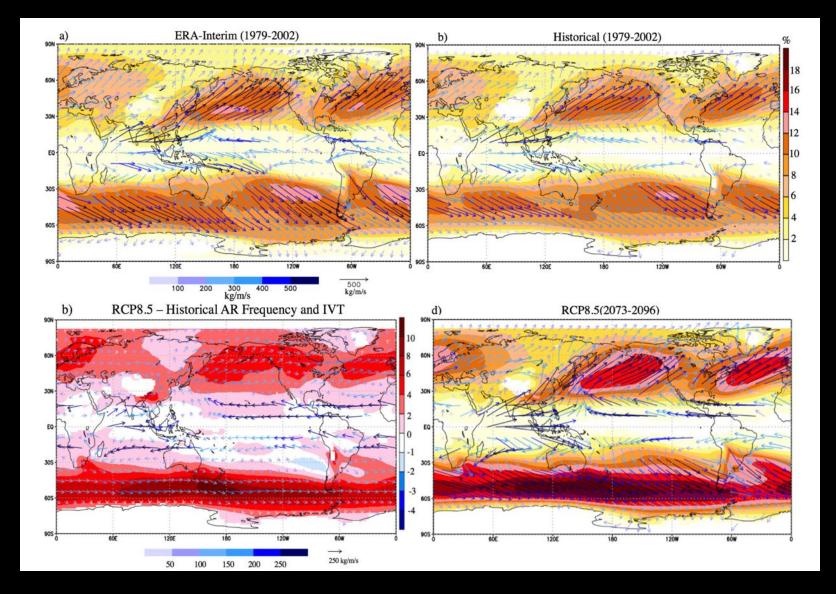

Applying Global AR Detection Algorithm

Compute Model-Dependent 85th Percentile of IVT from Historical Simulations*

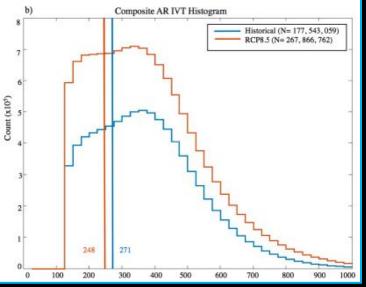
- IVT > 85th percentile
- Look for contiguous areas
- Length > 2000 km
- Length/Width > 2

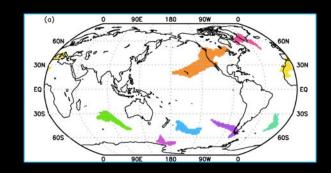

Apply AR detection algorithm* to Historical, RCP4.5, RCP8.5 Simulations

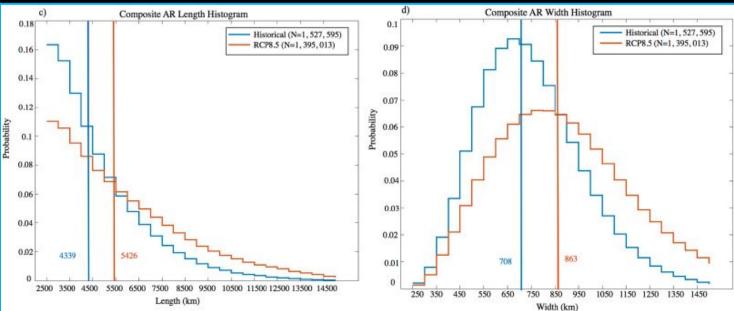
*Use Historical IVT threshold for AR detection on Historical, RCP4.5 and RCP8.5 simulations



Climate Change & ARs AR Frequency, Size & Transport: 21 CMIP5 Models

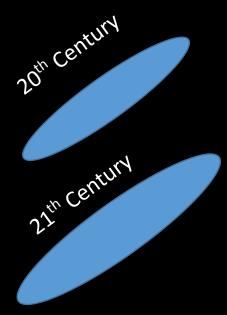

Climate Change & ARs AR Frequency, Size & Transport: 21 CMIP5 Models




Jet Propulsion Laboratory California Institute of Technology

Climate Change & ARs AR Frequency, Size & Transport: 21 CMIP5 Models

AR conditions vs AR Events



Climate Change & ARs

AR Frequency, Size & Transport: 21 CMIP5 Models

Typical AR Object

Length 4300km Width 700km Number* 1.53M

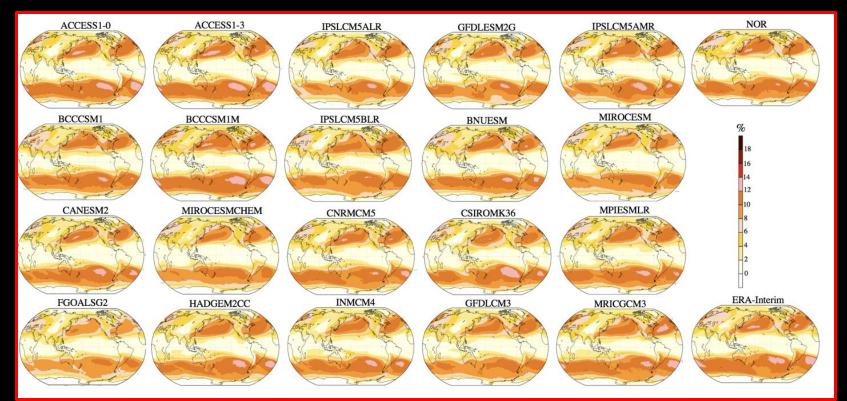
Typical AR Object Length 5400km Width 855km Number* 1.40M About 25% longer About 25% wider About 10% fewer

Changes in ARs

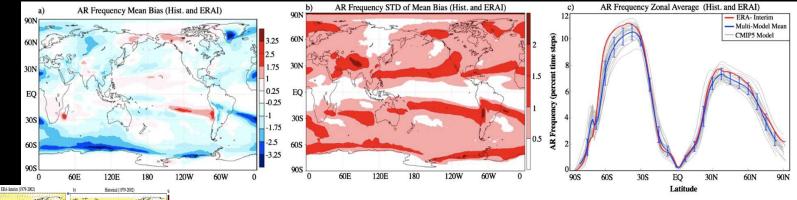
AR Conditions = Number ARs * Length * Width

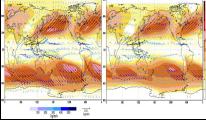
Present = $4.61 \times 10^{12} \text{ km}^2$ Future = $6.46 \times 10^{12} \text{ km}^2$ * Total Number in 20 Year Period

About 40% Increase in AR Conditions

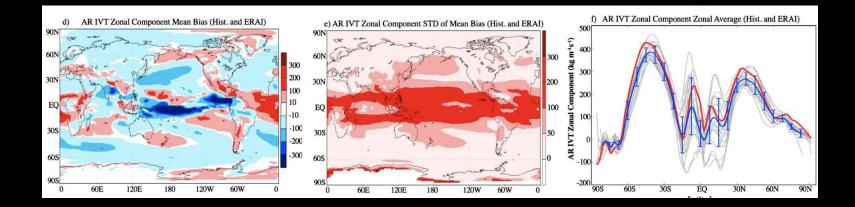

Occurrence of extreme IVT values within ARs ~double.

CMIP5 Model Biases

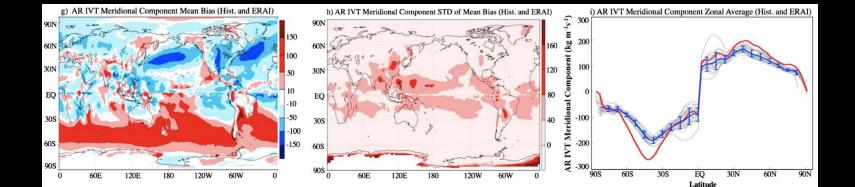

AR Frequency


Historical Simulations

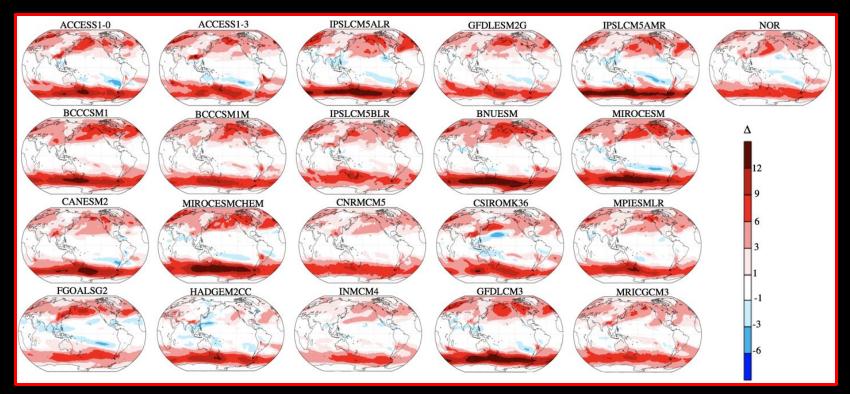
CMIP5 Model Biases AR Frequency & IVT



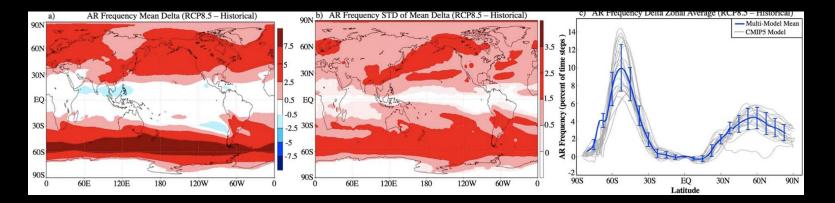
CMIP5 Model Biases

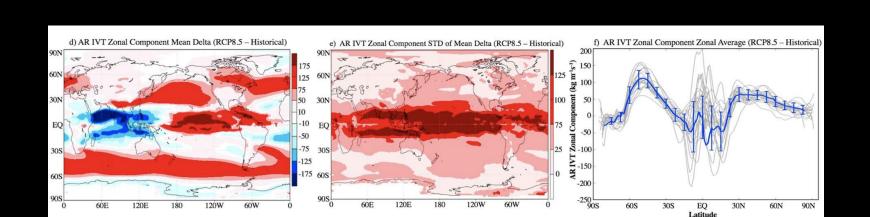

AR Frequency & IVT

CMIP5 Model Biases

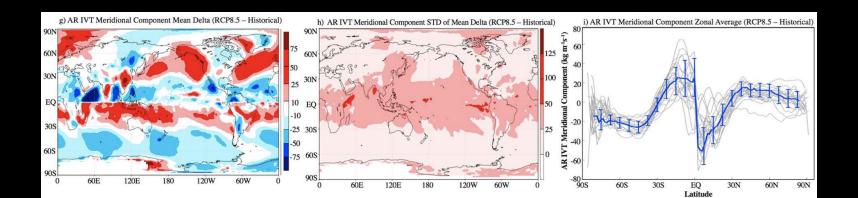

AR Frequency & IVT

CMIP5 Model Projections AR Frequency


RCP8.5 - Historical

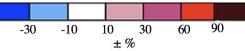

Jet Propulsion Laboratory California Institute of Technology

CMIP5 Model Projections AR Frequency & IVT

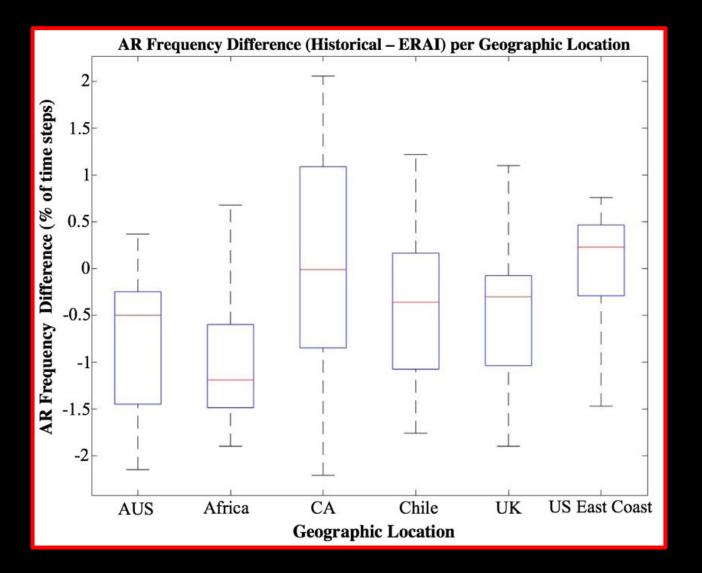

CMIP5 Model Projections AR Frequency & IVT

CMIP5 Model Projections

AR Frequency & IVT



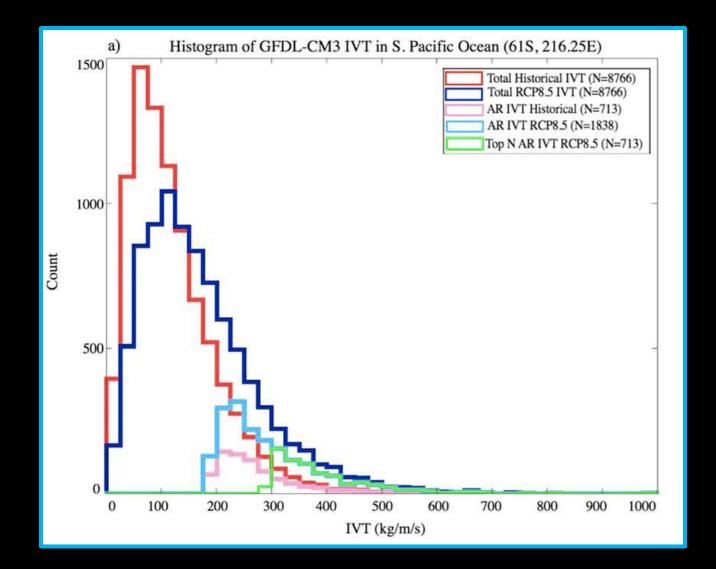
Jet Propulsion Laboratory California Institute of Technology


Regional Details: Bias & Projections

A. CMIP5 Average ill Trequency per Geographic Location																			
CMIP5 Model	California Coast		U.S. East Coast		S.W. Australia		UK			S.W. Chile			S.W. Africa						
	H(%)	RCP(%)	• ±%	H(%)	RCP(%)	±%	H(%)	RCP(%)	±%	H(%)	RCP(%)	± %	H(%)	RCP(%)	±%	H(%)	RCP(%)	±%	
ACCESS1-0	6	9	45	11	13	19	6	7	16	10	15	52	11	9	-19	8	10	37	J
ACCESS1-3	6	9	46	12	15	26	5	6	14	9	16	66	10	10	1	7	11	51	1
BCCCSM1	8	11	32	11	14	29	7	9	30	9	16	85	11	12	17	7	9	20	18
BCCCSM1M	9	12	29	12	14	24	7	8	16	10	16	51	11	12	2	7	9	23	16
BNUESM	7	10	32	11	14	27	6	7	8	9	15	75	10	11	13	7	9	30	10
CANESM2	6	11	95	10	11	11	7	9	23	9	13	51	9	7	-28	7	9	29	-14
CNRMCM5	7	11	62	11	13	17	7	7	2	9	14	51	11	12	13	7	9	37	12
CSIROMK36	6	9	62	11	12	11	6	9	56	9	15	69	11	11	0	6	9	39	
FGOALSG2	7	7	2	9	12	29	7	9	21	8	13	67	9	13	40	7	8	15	-10
GFDLCM3	8	11	33	11	14	21	6	6	0	10	17	79	10	9	-9	7	8	16	8
GFDLESM2G	7	9	32	11	13	21	5	6	16	9	16	65	10	10	8	6	9	42	
HADGEM2CC	7	9	33	11	11	1	5	6	28	9	12	31	10	10	4	6	11	70	6
INMCM4	7	10	47	11	13	16	7	8	28	10	13	38	9	9	-1	6	7	14	4
IPSLCM5ALR	8	13	68	11	17	50	6	7	19	9	16	78	10	11	9	6	7	24	-+
IPSLCM5AMR	9	14	59	11	15	30	6	7	9	10	15	48	9	10	9	6	7	11	2
IPSLCM5BLR	9	12	28	12	15	31	7	10	53	10	16	66	11	13	23	8	10	25	
MIROCESM	5	7	39	11	13	27	7	7	1	8	15	82	9	10	20	7	8	14	
MIROCESMCHEM	5	7	39	11	14	37	7	8	12	8	15	87	9	10	17	7	9	23	\Box
MPIESMLR	7	11	57	11	13	27	7	6	-3	10	15	54	10	11	4	8	9	8	
MRICGCM3	9	11	33	12	14	21	7	8	16	11	14	31	12	13	8	8	11	25	
NOR	7	9	31	11	13	13	5	5	8	9	14	51	10	10	-5	6	8	31	
		10						_	10				10			_			
Average	7	10	43	11	14	23	6	7	18	9	15	61	10	11	6	7	9	28	
Std. Dev.	1	2	1 <u>9</u>	1	1	<u>10</u>	1	1	1 <u>5</u>	1	1	17	1	2	1 <u>5</u>	1	1	1 <u>5</u>	
ERA-Interim	7			11			7			10			10			8			

Regional Details: Bias AR Frequency

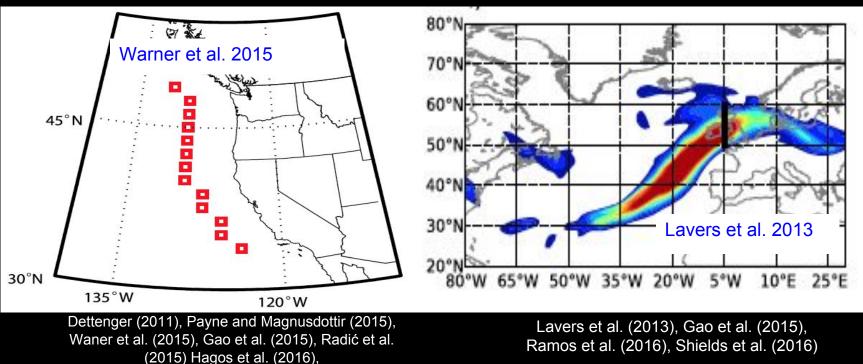
Summary


A uniform, global approach is used to quantify how atmospheric rivers (ARs) change between CMIP5 historical simulations and future projections under the RCP4.5 and RCP8.5 warming scenarios.

Key Points:

- Globally, CMIP5 projects that atmospheric rivers (ARs) will be ~10% fewer, ~25% longer, ~25% wider, and with stronger moisture transport under the RCP8.5 scenario.
- In the midlatitudes where ARs are most frequent, AR conditions are ~50–60% more frequent and AR transport is ~20% stronger in the future.
- Systematic low biases exist in the midlatitudes in historical AR frequency (~10%), zonal (~15%), and meridional (~25%) moisture transport.

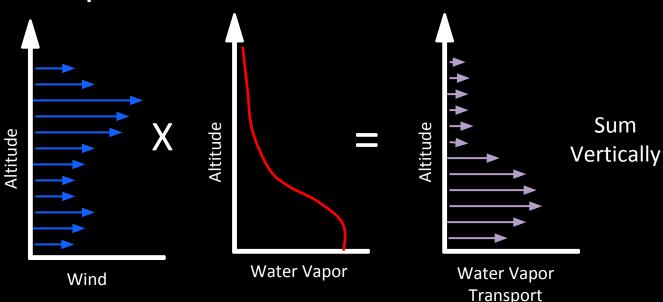
Illustrative Method Slide



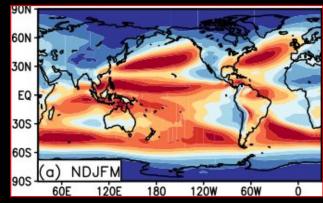
Climate Projection Studies Of Atmospheric Rivers To Date Mostly Focused On Two Regions

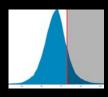
Western N. America

Western/Northern Europe



The Impacts Of Climate Change On "Atmospheric Rivers" Across The Globe Has Yet To Be Examined


Global AR Detection



II. Map IVT timeseries globally

III. Apply AR Criteria

- IVT > 85th percentile
- Look for contiguous areas
- Length > 2000 km
- Length/Width > 2

Gives Long, Narrow Extreme Moisture Transports i.e. Rivers