Hydrologic Impacts of Atmospheric Rivers in the Western U.S.

Christine M. Albano

Graduate Program in Hydrologic Sciences University of Nevada, Reno and Desert Research Institute

Michael D. Dettinger

U. S. Geological Survey

Adrian Harpold

University of Nevada, Reno

AR Impacts Range from Hazardous to Beneficial

- Cat 5 Primarily hazardous
- Cat 4 Mostly hazardous, also beneficial
- Cat 3 Balance of beneficial and hazardous
- Cat 2 Mostly beneficial, also hazardous
- Cat 1 Primarily beneficial
- Ralph et al., In review

Objective: Characterize the magnitude, nature, and variability of hydrologic impacts based on the AR scale

Over Space

- Atmospheric conditions and terrain affect precipitation amounts
- Site differences affect hydrology

Over Time

MENDOCINO MOUNTAINS

- Atmospheric conditions affect precipitation amounts
- Antecedent conditions affect hydrology

Approach: Assess probable (50th percentile) and potential extreme (90th percentile) hydrologic impacts

Over Space

- Composite 50th/90th percentile hydrologic responses by AR CAT
 - Runoff
 - Δ Soil Moisture
 - Δ Snow Water Equivalent

Over Time

 Quantile regression of 50th/90th percentile hydrologic responses to AR conditions from 1980-

2013, by pixel

Storm Total IVT

Data and Methods – Atmospheric River Event Chronology

- Rutz MERRA-2
- Winter (Oct-Apr) ARs, 1980-2013
- 3 hr \rightarrow Daily \rightarrow Event Scale

Composite Analysis

• Storm Total IVT Classes

STIVT 10 ⁷ (kg/m)	AR CAT
>19.44	Cat 5 – Primarily hazardous
>12.96	Cat 4 – Mostly hazardous, also beneficial
>8.64	Cat 3 – Balance of beneficial and hazardous
>4.32	Cat 2 – Mostly beneficial, also hazardous
>2.16	Cat 1 – Primarily beneficial

Multiple Quantile Regression

- n > 30 AR events per pixel
- Predictor Variables:
 - Storm Total IVT
 - Specific humidity-weighted
 - temperature
 - wind direction
 - Antecedent soil moisture (VIC model)

Data and Methods – Hydrologic Responses

Variable Infiltration Capacity (VIC) Model

- 1/16th degree, Livneh et al. 2015
 - Antecedent Soil Moisture (Predictor)
 - Response Variables
 - Precipitation (model forcing)
 - Surface Runoff + Δ Baseflow
 - Δ Soil Moisture
 - Δ Snow Water Equivalent

Variable Infiltration Capacity (VIC) Macroscale Hydrologic Model

Number of AR Events by Category 1980-2013

Median Precipitation Impact by AR Category

RUNOFF

 Δ SOIL H₂O

PRECIP

NTILE 90th PERCENTILE

Quantile Regression Model Fits

Precipitation =STIVT + WIND DIRECTION

 $\Delta Soil Moisture$ = STIVT + WIND+TEMP+ANTECEDENT SOIL

Runoff =STIVT + WIND+TEMP+ ANTECEDENT SOIL

 Δ **SWE** =STIVT + WIND+TEMP

0.9 0.8 0.7 0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

 R^1

90th

Runoff

Storm Total IVT

Runoff Response to Antecedent Conditions and IVT Varies among Sites

Summary

- Similar AR conditions (STIVT) overhead result in different impacts over space
 - Larger response in coastal and mountainous terrain
 - Magnitude and nature of hydrologic response differs among sites
- Wide variation in impacts over time at a given location and STIVT
 - Upper limits have closer connection and are more sensitive to STIVT than central tendencies
 - STIVT has almost no association with precipitation in some places
 - Role of other drivers varies among locations

Storm Total IVT

Implications

- Results provide a spatially explicit interpretation of the AR scale that can be used for communicating potential impacts
- Quantile regression may be a useful tool for linking maximum potential hydrologic impacts to AR characteristics
 - Response 'ceiling' varies linearly with STIVT in many locations