Pacific Northwest Storm of 13-15 November 2015: A Synopsis of Landfalling Atmospheric River Conditions

Pacific Northwest Storm of 13-15 November 2015: A Synopsis of Landfalling Atmospheric River Conditions

November 25, 2015

CW3E researcher Brian Kawzenuk provides an analysis and synopsis of an Atmospheric River that made landfall along the U.S. Pacific Northwest over the 13-15 November 2015 period. The AR made initial landfall along the Washington coast and lead to significant precipitation for nearly three days throughout western Oregon, Washington, and British Columbia. The AR initially developed near Japan and propagated across the entire North Pacific Ocean before making landfall.


Above is a sequence of 30-minute NEXRAD radar composite imagery from 12-15 November 2015 which shows precipitation throughout the Pacific Northwest during nearly the entire period.



The above loop shows SSMI Integrated Water Vapor during 10-15 November 2015.







A Preliminary Summary of Highway 58 and I-5 Flooding Event of October 15, 2015

A Preliminary Summary of Highway 58 and I-5 Flooding Event of October 15, 2015

October 27, 2015

Nina Oakley (WRCC/DRI), Jeremy Lancaster (CGS), John Stock (USGS), Brian Kawzenuk (CW3E), and Mike Kaplan (DRI) provide an analysis and synopsis of the meteorological and geological conditions that produced alluvial fan flooding over portions of Highway 58 and Interstate 5 in southern California. A weakening cutoff low that had entrained subtropical moisture moved onshore over southern California, initiating convection and localized heavy precipitation. Hillslope runoff concentrated in steep valleys where it entrained debris. The debris then flowed onto steep alluvial fans at the base of these valleys, inundating portions of I-5 and State Hwy 58.

Click here for pdf file of this information.

























Click here for pdf file of this information.

Improving Understanding of Atmospheric Rivers: Legislation Authorized by California Governor Brown

Improving Understanding of Atmospheric Rivers: Legislation Authorized by California Governor Brown

October 12, 2015

The Center for Western Weather and Water Extremes (CW3E) is grateful for the approval of legislation that will improve California’s ability to respond to major precipitation episodes. This legislation, recently approved, will aim to allow the state of California to better manage water supplies by expanding climate and weather research that is focused on the causes of drought and flood.

The two images below show an example of research aimed at improving forecasting ability. The two maps show the integrated water vapor (IWV) forecast from February 9, 2014. The top panel shows a CW3E simulation by a regional model (called West-WRF). The bottom panel shows a national forecast by the Global Forecasting System (GFS). The CW3E simulation offers a resolution of 9km while the national forecast is at 0.5 degrees (approximately 100km). This improved model forecast horizontal resolution will allow forecasters to better pinpoint heavy precipitation events aimed at the west coast.


Please find more at the Scripps Institution of Oceanography news page:

Resilience in a Changing Climate: Sonoma County Adaptation Forum

Resilience in a Changing Climate: Sonoma County Adaptation Forum

April 15, 2015

CW3E director Marty Ralph and scientist Julie Kalansky presented at the Sonoma County Adaptation Forum on April 8th. The forum was modeled after state forums, but was the first regional adaptation forum in California. The forum focused on information and approaches to help mitigate the impacts of climate change in Sonoma County and surrounding areas. The audience of over 200 people included city and county leaders, utility managers, environmental groups and the public.

Both Marty and Julie presented in the first session of the morning entitled “Extreme Weather Science; Drought and Deluge in Sonoma County.” Jay Jasperse, Chief Engineer and Director of Groundwater Management at Sonoma County Water Agency, moderated the session. The other panelists included Tim Doherty, from NOAA’s Office for Coastal Management, who discussed the impacts of sea level rise on the region, and Dr. Lisa Micheli, Executive Director of Pepperwood Preserve, who presented on the importance of downscaling climate models to understand the regional response to climate change. Marty Ralph discussed the importance of atmospheric rivers (ARs) to the water supply as well as the potential flooding risk associated with ARs. This led into an explanation of the FIRO, forecast informed reservoir operations, project for improving the water supply resilience of Lake Mendocino. At the end of his presentation he introduced the first part of an ongoing NOAA-NIDIS and Sonoma County Water Agency funded project to examine how the frequency and intensity of ARs may change in future. The link below is to an interview with Marty Ralph about atmospheric rivers and the forum that was broadcasted on North Bay Public Radio.

After Marty’s presentation, Julie presented on the second part of the study including the development of a “mega-drought” stress test for the region and working with the community to understand the all the different dimensions of drought. During Julie’s presentation, she was able to involve the audience and received feedback on the vulnerabilities to drought and the difficult decisions that surround drought. The day was a great success in bringing together scientists, decisions makers and the public to discuss how to make the community more resilient to climate change.

Sonoma County Water Agency video posted about Atmospheric Rivers

Sonoma County Water Agency (SWCA) Video posted about Atmospheric Rivers (ARs)

March 4, 2015

CW3E is pleased to be part of a recent video produced by our partners at the Sonoma County Water Agency (SCWA) and hosted by SCWA Director Shirlee Zane. This video focuses on the importance of Atmospheric Rivers (ARs) to California’s precipitation. Extremes of both drought and flood are examined for their link to ARs and impact on the Sonoma region. Emphasis is placed on the importance of understanding ARs and applying that knowledge to create better forecast information to help SCWA prepare for drought and potential flood conditions. Shirlee points out a key goal of our collaboration: “retain water without increasing flood risk”.

California Drought: 2013/14 4th driest water year on record

California Drought: 4th driest water year depletes reservoirs

October 1, 2014

CW3E partners at the Sonoma County Water Agency (SCWA) are quoted in a recent article in the Santa Rosa Press Democrat marking water year 2013/14 as the 4th driest on record.


The baked lakebed of Lake Mendocino shows a carp head (photo taken 30 September 2014 by Press Democrat photographer Kent Porter)

Dwindling reservoir levels are one of the main concerns due to the drought – Lake Mendocino is only 27% full. The article mentions the research partnership between SCWA and CW3E. Understanding the key role of atmospheric rivers in the area’s water supply is a focus of the research agreement. Please find the full article (including additional photos and a video) at:

Atmospheric Rivers as Drought Busters

Atmospheric Rivers: Drought Busters

Drought status in California before and after two atmospheric river events in January 2010 (middle panel shows precipitation from these systems over 20 inches in some areas). recently highlighted CW3E researcher Mike Dettinger’s work looking at atmospheric rivers as drought busters (click here to see the post). Mike’s article “Atmospheric Rivers as Drought Busters on the US West Coast” was published in December 2013 in the AMS Journal of Hydrometeorology (find a link to this article on the CW3E publications page or click here). Given the dry conditions that have persisted over the last few years causing severe to extreme drought over the US West this article has received well-deserved attention. The piece highlights the impact of an atmospheric river storm from January of 2010. This image (shown above) illustrates the drought conditions before the storm (left panel), the amount of precipitation from the storm (middle panel – showing some areas had over 20 inches of precipitation!) and the drought conditions after the storm (right panel – showing the moderate and severe drought region greatly reduced).