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Abstract This study examines the health impacts of recent heat waves statewide and 24 

for six subregions of California: the north and south coasts, Central Valley, Mojave, 25 

southern deserts, and northern forests.  Using Canonical Correlation Analysis applied to 26 

daily maximum temperatures and morbidity data in the form of unscheduled 27 

hospitalizations from 1999 to 2009, we identified 19 heat waves spanning 3-15 days in 28 

duration that had a significant impact on health. On average, hospital admissions were 29 

found to increase by 7% on the peak heat wave day, with a significant impact seen for 30 

several disease categories including cardiovascular disease, respiratory disease, 31 

dehydration, acute renal failure, heat illness and mental health.  Statewide, there were 32 

11,000 excess hospitalizations due to extreme heat over the period, yet the majority of 33 

impactful events were not accompanied by a heat advisory or warning from the National 34 

Weather Service.  Regionally, the strongest health impacts are seen in the Central Valley 35 

and the north and south coasts. The north coast contributes disproportionately to the 36 

statewide health impact during heat waves with a 10.5% increase in daily morbidity at 37 

heat wave peak, compared to 8.1% for the Central Valley and 5.6% for the south coast. 38 

The temperature threshold at which an impact is seen varies by subregion and timing 39 

within the season.  These results suggest heat warning criteria should consider local 40 

percentile thresholds to account for acclimation to local climatology as well as the 41 

seasonal timing of a forecasted heat wave. 42 

 43 

 44 

 45 

 46 
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1. Introduction 47 

The devastating effects of extreme heat events have been seen in recent years. The 48 

2003 European heat wave and the 2010 Russian heat wave each resulted in tens-of-49 

thousands of deaths (Agence Frence-Presse 2010, Robine et al. 2007) and the 2006 50 

California heat wave killed more than 600 (Trent et al. 2006; Ostro et al. 2009) and 51 

resulted in over 16,000 excess hospital emergency department visits (Knowlton et al. 52 

2009).  Adding to the tragedy of these losses is the fact that most heat-related deaths are 53 

preventable with adequate warning tools and effective emergency planning.  Since 54 

climate change has the potential to increase the frequency of these types of events (Meehl 55 

and Tebaldi 2004; IPCC 2007, 2012), improved heat warning systems are urgently 56 

needed.  This would require a better knowledge of the full impact of extreme heat on 57 

morbidity and mortality. 58 

 California has unique challenges for heat wave preparedness owing to its diversity 59 

of population and climate zones.  Some residents live in desert conditions just inland of 60 

coastal populations who are used to relatively mild temperatures.   Additionally, many 61 

residents lack air conditioning, especially along the coast, making them particularly 62 

vulnerable during extreme heat events (Sailor and Pavlova 2003; Reid et al. 2009).  This 63 

vulnerability was apparent during the 2006 California heat wave that affected most of the 64 

state. Health impact studies of that heat wave showed that while temperatures were hotter 65 

inland, the health impacts were stronger along the coast (Knowlton et al. 2009; 66 

Gershunov et al. 2011).  The 2006 heat wave was unusually humid and nighttime 67 

temperatures were unprecedented, therefore the nighttime recovery, typical for 68 

California, was stifled.  Recent work
 
shows a clear trend in humid heat waves in the 69 
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Western US with a disproportionate increase in nighttime temperatures (Gershunov et al. 70 

2009; Bumbaco et al. 2013). In fact, California coastal communities are becoming 71 

increasingly susceptible to mid-summer, humid heat waves to which they are not 72 

accustomed (Gershunov and Guirguis 2012, hereinafter GG2012).  Thus, coastal 73 

populations may be at a higher risk for heat-related illness in the short- and long-term 74 

future, since they are neither physiologically nor technologically acclimatized to this type 75 

of heat.   76 

 California heat alert criteria relies on the Heat Index, which is based on empirical 77 

relationships between temperature/humidity thresholds and mortality in a few major US 78 

cities. However, the National Heat Index threshold of 105 used by the National Weather 79 

Service (NWS) to issue a heat warning does not work well in California.  Desert 80 

communities regularly exceed this threshold, but residents are well adapted to extreme 81 

heat.  Coastal communities rarely exceed this threshold but are much more vulnerable to 82 

heat illness because they are accustomed to much milder conditions.  For effective 83 

weather warnings, events posing a danger to health should be identified locally with 84 

higher or lower thresholds directed at populations living in hotter or cooler climates, 85 

respectively (Robinson 2001).  Additionally, mortality only accounts for a small portion 86 

of acute health effects so for effective preparedness, nonfatal illness should also be 87 

considered.  Local NWS offices typically modify the alert criteria to better suit California 88 

conditions, but these decisions are put in place with only limited information about local 89 

heat-health relationships. Such information would be highly beneficial for making 90 

informed decisions about when to issue a warning, which could prevent heat-related 91 

illnesses and save lives.  92 
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There have been many studies investigating the impacts of extreme heat on 93 

human health (e.g. Basu and Samet 2002; Martiello and Giacchi 2010).  However, most 94 

of this work has focused on health impacts related to daily ambient apparent temperatures 95 

observed throughout the summer (e.g. Basu et al. 2009; Basu et al. 2012) with much less 96 

attention given to health outcomes from one heat wave to another.  Health impact studies 97 

of heat waves (multiple days of hot weather) have primarily focused on a few notorious 98 

heat waves such as Chicago 1995 (e.g. Kaiser et al. 2007), Europe 2003 (e.g. Le Terte et 99 

al. 2006), or California 2006 (e.g. Knowlton et al. 2009).  Long-term heat wave studies 100 

require some definition of a heat wave, and there is no universal definition.  Usually heat 101 

waves are defined by magnitude as days exceeding a set temperature or percentile 102 

threshold and may also include a duration requirement (e.g. Hajat et al. 2006; 103 

Mastrangelo et al. 2007; Son et al. 2012; Vaneckova and Bambrick 2013) or by synoptic 104 

weather type (e.g. Sheridan et al. 2012; Sheridan and Kalkstein 2010; Vaneckova et al. 105 

2008) and the heat-health impact is subsequently quantified. Our methodology takes a 106 

new approach by using health and meteorology data simultaneously to identify dangerous 107 

historical heat waves occurring in California between 1999 and 2009. The advantage is 108 

we make no a priori assumption about the kinds of conditions affecting human health.  109 

This leaves open the possibility of detecting a health impact during events that might not 110 

typically be considered extreme.  Coastal communities who are not well acclimated to 111 

heat, for example, may be adversely impacted during a heat wave at lower temperatures 112 

than inland communities.   113 

In addition to statewide impacts, this study also investigates regional impacts 114 

using six regions defined empirically based on heat wave expression over the State’s 115 
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complex geography.  These are the north and south coasts, Central Valley, Mojave, 116 

southern deserts, and northern forests. Heat risk warnings issued by the NWS during 117 

specific heat waves are considered in the context of actual health risks as measured by 118 

excess hospitalizations. Beyond improved understanding of the meteorological impacts 119 

on heat illness, we aim for the results presented below to be practical and useful for 120 

optimizing the effectiveness of regional heat warnings.  121 

 122 

2. Data  123 

a. Climate and Weather Data 124 

The daily maximum temperatures (Tmax) are from Maurer et al. (2002), 125 

comprised of daily station data interpolated onto a regular 12x12 km grid with 126 

temperature lapsed to grid cell center elevations.  The source station data are from the 127 

National Climatic Data Center (NCDC) first-order Automated Surface Observing System 128 

(ASOS) and cooperative observer (coop) summary of the day (NCDC 2003).  Grid to 129 

station differences would depend on location with larger differences seen in areas of 130 

complex elevation or strong spatial temperature gradients over relatively short distances.  131 

For example, the 1999-2009 summertime temperature record from the downtown San 132 

Francisco coop station is approximately 0.13 C warmer than that of its nearest grid cell.  133 

This is because the grid cell represents temperatures over a larger area including parts 134 

immediately on the coast.  For this study, grid cells that were co-located with the zip-135 

code level health data (described below) were averaged over six pre-defined California 136 

subregions to give regional daily maximum temperatures from 1999-2009.  These 137 

subregions were defined empirically using Principal Components Analysis applied to 138 
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temperature data as described in GG2012.  As a result of the regionalization, localities 139 

grouped within a given region exhibit a similar temporal variability in heat wave activity.  140 

These six regions are shown in Figure 2b. 141 

Daily specific humidity (SH) data are from the North American Regional 142 

Reanalysis (NARR, Messinger et al. 2006).  The SH data were processed just as for 143 

Tmax to give daily, regional averages of specific humidity. 144 

 145 

b. Health Outcome Data 146 

Data were compiled from the Office of Statewide Health Planning and 147 

Development (OSHPD) Patient Discharge (PD) Data for the warm season (May-Sept) 148 

spanning 1999-2009.  These data were limited to only include hospitalizations at acute 149 

care facilities that were designated as unscheduled, so they would represent a subset of 150 

emergency department visits in which conditions were serious enough to require 151 

hospitalizations.  The data were aggregated to zip code level to protect patient privacy 152 

and include zip code, date of hospital admission, day of week, and counts for each health 153 

outcome category and stratification by age and race/ethnicity.  The outcome categories 154 

(Table 2) included all cardiovascular diseases and cardiovascular subcategories (ischemic 155 

heart disease, acute myocardial infarction, cardiac dysrythmias, and essential 156 

hypertension), all respiratory diseases, acute renal failure, mental health, dehydration, and 157 

heat illness.  We also considered “all causes” as an outcome category, which was taken as 158 

the sum of all the outcome categories listed in Table 2. 159 

For the purposes of this study, the PD data were aggregated regionally in the same 160 

regions as for Tmax.  The regional PD data were then filtered to remove periodic signals 161 
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and long-term trends.  Because of annual variation in viral activity and other causes, 162 

morbidity is higher in spring and fall than in mid-summer. This annual and semiannual 163 

harmonic seasonal cycle was removed using least squares regression analysis.  164 

Hospitalizations are notably lower on weekends and holidays. The weekly cycle was 165 

removed by subtracting the long-term day-of-the-week average from each daily 166 

admissions count, and the holiday effect was removed by subtracting the average holiday 167 

admission count from each Memorial Day, Labor Day, or July 4
th

 holiday.  Very low 168 

admissions also occurred on July 5
th

 when the July 4
th

 holiday occurred on a Sunday, 169 

since most Americans would have received a work holiday on that Monday.  During 170 

those years, July 5
th

 was treated as a holiday.   Finally, any long-term trend in the data 171 

was removed using locally weighted scatterplot smoothing (LOWESS, Cleveland 1979), 172 

which fits a quadratic curve to the nearest 30% of data points.   Figure 1 provides an 173 

illustration of the filtering process for the Coastal North region.   174 

 175 

c. Historical Heat Alert/Advisory Information 176 

Historical information about heat advisories or alerts issued by the National 177 

Weather Service (NWS) was obtained from NOAA’s Hierarchical Data Storage System 178 

(HDSS) available at 179 

http://hurricane.ncdc.noaa.gov/pls/plhas/HAS.FileAppSelect?datasetname=9957ANX for 180 

the non-precipitation warnings, watches and advisories category, as well as other internal 181 

NWS communication.    182 

 183 

d. Historical Electrical Alert Information 184 

http://hurricane.ncdc.noaa.gov/pls/plhas/HAS.FileAppSelect?datasetname=9957ANX
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Information on historical power alerts issued by the California Independent System 185 

Operator (ISO) was obtained from the ISO Alert, Warning, and Emergency Records from 186 

1998 available at 187 

http://www.caiso.com/Documents/Alert_WarningandEmergenciesRecord.pdf.  Local 188 

utilities generally follow the ISO recommendations and issue their own alerts to promote 189 

conservation.  However, occasionally a local utility may issue an alert unaccompanied by 190 

the ISO.  For this research we only had access to those alerts issued by the California 191 

ISO. 192 

 193 

3. Methods 194 

a. Canonical Correlation Analysis  195 

This study uses Canonical Correlation Analyses (CCA) to identify space-time 196 

patterns of heat wave expressions optimally related to morbidity. CCA is a multivariate 197 

statistical approach used to linearly summarize information contained in the cross-198 

correlation matrix between two sets of variables, in this case daily maximum 199 

temperatures and morbidity as represented by hospitalizations.  CCA transforms the 200 

original data pairs (x and y) into new variables called canonical variates defined as  201 
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where x (Tmax) and y (PD) are the centered data vectors (standardized for this study), I is 204 

the number of elements in x, J is the number of elements in y and m is the number of 205 

pairs of canonical variates that can be obtained from the two datasets and is equal to the 206 

http://www.caiso.com/Documents/Alert_WarningandEmergenciesRecord.pdf
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lesser of I and J.  Each canonical variable v and w is a linear combination of elements of 207 

the respective data vectors, or in other words a weighted average with weights given by a 208 

and b in the above equations (Wilks, 2006). Pairs of canonical variates are ordered 209 

sequentially by the degree of correlation between v and w, such that the first pair (CC1) 210 

exhibits the maximum canonical correlation.  CCA was originally developed by Hotelling 211 

(1935, 1936) to identify and quantify associations between two sets of variables and was 212 

initially used in the social sciences.  In climate prediction, CCA has been used to match 213 

patterns in two fields of variables, typically with the intention to forecast one with the 214 

other, i.e. the predicted with the predictor (Barnett and Preisendorfer 1987; Gershunov 215 

and Cayan 2003; Alfaro et al. 2006).  Here, we use CCA as a purely diagnostic tool to 216 

identify periods in the recent historical record when daily maximum temperatures and 217 

morbidity were strongly correlated.   We have previously used CCA to identify heat and 218 

humidity effects on county-level emergency department (ED) visits over California in a 219 

limited ED data set spanning only one year (2006) and resolving the impacts of only one 220 

heat wave (Gershunov et al. 2011). Here, the daily input Tmax (x’) and PD (y’) data 221 

arrays span 11 years, are regionally averaged, as well as filtered and standardized to filter 222 

out local noise and remove population density bias, while focusing on meteorologically 223 

relevant regions. For the purposes of discussion, we refer to the first canonical variable v1 224 

as CC1Tmax and the first canonical variable w1 as CC1Health (Figure 2a). These variables 225 

represent the simultaneous pattern of strongest linear co-evolution of temperature and 226 

hospitalizations throughout California (Figure 2b).   Higher order canonical modes were 227 

poorly related to temperatures and health.  So, while they do explain some heat-health 228 
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covariability, we focus our analysis on the primary mode, which best represents the 229 

spatial-temporal pattern of heat-related health outcomes in California.   230 

In preliminary analyses we tested our methodology using daily minimum 231 

temperatures (Tmin).  However, the Tmax results were found to be more robust both in 232 

terms of the correlation between the canonical variable and the source data (i.e. the 233 

correlation between CC1 and x’) and the correlation between the two canonical variables 234 

(i.e. u and w).  Therefore the results using Tmax were superior in describing the heat-235 

health relationship in California.  This is likely because California experiences both dry 236 

and humid heat waves and Tmax is elevated during both varieties while Tmin may not be 237 

strongly elevated during dry events.  238 

 239 

b. Identifying Heat-Health Events 240 

We identified those heat waves in the 11-year record having an impact on human 241 

health by looking for cases where three criteria were met: (1) canonical variables 242 

CC1Tmax and CC1Health (Figure 2a) were significantly correlated (at the 95% level, r>0.51) 243 

using a running 15-day window, (2) a strong temperature anomaly was observed as 244 

represented by canonical variable CC1Tmax crossing a 1 SD threshold and (3) a strong 245 

health anomaly was observed as represented by canonical variable CC1Health crossing a 1 246 

SD threshold.   To allow for some flexibility in timing, a heat-health event (HHE) is 247 

defined to span the full duration of the heat anomaly from when it first becomes warm 248 

(CC1Tmax is positive), peaks (at least once) and then drops back to normal again.  The 249 

health impact can occur at any point within this heat event, so would allow for lags in 250 
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response and additionally allows us to quantify the full health impact of an individual 251 

heat wave.  252 

 253 

4. Results 254 

a. Heat-Health Events 255 

Figure 2a shows the first pair of canonical variates CC1Tmax and CC1Health.  These 256 

time series are only moderately, yet significantly, correlated (r=0.3) over the 11-year 257 

record signifying that, as expected, disease processes associated with heat are not the 258 

main cause of morbidity.  However, over shorter intervals the relationship between heat 259 

and illness can become much stronger than the long-term average (Figure 3).  For 260 

example, using a 15-day running window, the correlation reaches 0.79 and 0.82 during 261 

the July 2006 and 2003 heat waves, respectively.  Figure 2b gives the homogeneous 262 

correlation maps showing how well each of the input data vectors are represented by their 263 

canonical variates. CC1Tmax best represents Tmax on the Coastal North (r=0.94) and also 264 

does reasonably well in capturing Tmax variability on the Coastal South (r=0.62), Central 265 

Valley (r=0.55) and Southern Deserts (r=0.51) while the Mojave and Northern Forests 266 

are weighted less strongly (r=0.41 and r=0.40, respectively).  A similar regional pattern is 267 

observed for the health results although with generally weaker correlations.  CC1Health 268 

best represents hospitalizations in the Coastal North (r=0.82) followed by the Coastal 269 

South (r=0.62) and Central Valley (r=0.54) while hospitalizations in the Southern 270 

Deserts, Mojave and Northern Forests are not well represented by CC1Health (r<0.23).  271 

The heavy weighting of the Coastal North in both CC1Tmax and CC1Health highlights the 272 

sensitivity/vulnerability of this region’s population to extreme heat. This is a region 273 
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where summers are typically cool due to the proximity of cool coastal Pacific waters, 274 

which is further enhanced by marine layer clouds.  Coastal heat waves therefore do not 275 

need to be as hot as those over the hotter and air-conditioned inland to come as a stark 276 

contrast to typical conditions and catch residents unprepared.  This result is consistent 277 

with recent studies that considered the health impacts of the 2006 heat wave, and also 278 

found an increased sensitivity to heat in this region (Knowlton et al. 2009, Gershunov et 279 

al. 2011).   280 

Using the criteria described in Section 3 to identify heat-health events (HHEs): 281 

namely strong positive anomalies observed in both CC1Tmax and CC1Health as well as a 282 

significant correlation between them over a 2-week period, we identified 19 heat waves 283 

with a significant impact on human health.  These HHEs are outlined in red in Figure 3 284 

and additional details including peak date, duration and if a power alert or NWS heat 285 

advisory/warning was issued are provided in Table 1. These results show that at least one 286 

HHE occurred each year except 1999 and 2005 and five years (2000, 2001, 2003, 2006 287 

and 2009) had more than one event.  Records show a NWS heat warning was issued for 288 

only six of the 19 events.  The strongest health signal is seen for 12-16 June 2000, when 289 

CC1Tmax and CC1Health both exceeded 3.9 standard deviations above normal (Figure 3).  290 

This event occurred during the California energy crisis (e.g. Sweeny 2002) when market 291 

deregulation and high energy prices caused power shortages.  In fact, on the peak date of 292 

June 14 rolling blackouts affected 97,000 customers in northern California (Bergman, 293 

2001) while temperatures in San Francisco reached 105 F.  High energy prices were 294 

passed on to consumers during this time, which could have influenced personal decisions 295 

about air conditioning (AC) use, even where AC was available.  Of the five HHEs that 296 
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occurred during the 2000-2001 crisis, four were accompanied by a power alert.  Other 297 

summers that stand out as remarkable are the summer of 2003, which had six HHEs of 298 

varying strengths and duration, and the summer of 2006 for the duration and intensity of 299 

the mid-summer heat wave. 300 

Figure 4a (4b) shows the peak daily maximum and minimum temperatures 301 

(standardized anomalies) for each HHE.  Also in 4a are the number of days exceeding the 302 

warm season (May-Sep) 95
th

 percentile for each HHE and region, and an indicator of 303 

whether the monthly 95
th

 percentile was reached (*).  From Figure 4a, the Central Valley 304 

and Southern Deserts were hottest during all events, with daytime temperatures usually 305 

exceeding 37C (~98F).  From Figure 4b, the Coastal North tends to reach hotter 306 

temperatures (especially daytime) relative to its climatology as compared to other 307 

regions.  This means that, while the temperatures may be lower, these coastal residents 308 

are experiencing heat conditions that are very extreme relative to what they are used to 309 

and may experience health impacts at lower temperatures than inland populations more 310 

acclimatized to heat.  This figure also highlights the notorious 2006 heat wave affecting 311 

most of California, which was unprecedented in magnitude and spatial extent since at 312 

least the late forties (Gershunov et al. 2009) and nighttime temperatures are shown to be 313 

even more extreme than those experienced during the day.  Figure 4b also shows that 314 

during nighttime-accentuated events, when Tmin is extremely elevated, multiple regions 315 

are impacted (e.g. July 2002, 2003, 2006) indicative of a particularly expansive heat 316 

wave with the potential for large-scale, statewide impacts. 317 

It is interesting that in terms of summertime temperatures, these events often do 318 

not fall in the top 5% of daytime or nighttime highs, except in the Coastal North.  319 
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However if we look at monthly percentiles, the majority of events do fall in the top 5% 320 

(above the 95
th

 percentile) for all regions except the Coastal South.  This means that, for 321 

example, while a May event might not meet the summertime threshold for extreme 322 

temperatures, it would be extremely hot for that time of year.  This suggests populations 323 

may be more heat sensitive during cooler parts of the season.  An increased vulnerability 324 

early in the season has also been found in other studies (e.g. Basu and Samet 2002, Ebi et 325 

al. 1998).  This is generally attributed to the loss of acclimatization that occurs during the 326 

winter, as well as mortality displacement whereby the most vulnerable populations 327 

succumb to the first dangerous event of the season (Basu and Malig 2011).   328 

 329 

b. Statewide Health Impact 330 

The statewide heat-health impacts are shown in Figure 5 and Tables 1 and 2.  331 

Figure 5a shows the distribution of daily hospitalization anomalies during non-HHE days, 332 

during the span of a HHE and during the peak HHE day for all causes.  There is a 333 

dramatic increase in hospitalizations during HHEs, especially at the peak day.  This 334 

difference is statistically significant at the 95% level using a two-sample t-test to compare 335 

sample means.  For all causes, there was an average daily increase of 102 hospitalizations 336 

during the HHE span, which increased to 173 excess hospitalizations on the peak day.  In 337 

California during the 1999-2009 record there were, on average, 2519 hospitalizations per 338 

day.  Therefore, 173 excess hospitalizations at the peak represent nearly a 7% increase 339 

above what would occur on an average day.   340 

A similar comparison was done for each of the disease categories accounting for 341 

unequal variances as necessary for some categories.  A statistically significant increase in 342 
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hospitalizations was seen for all outcomes except essential hypertension, a cardiovascular 343 

subcategory.  This non-significant result for essential hypertension could be physiological 344 

as blood pressure goes down with increased heat exposure (Basu et al. 2012), or due to 345 

the small sample size (Table 2).  Hospitalizations due to all cardiovascular diseases 346 

increased by an average of 36 (49) per day for the HHE span (peak), or 3.5% (4.7%) 347 

above the typical cardiovascular disease admission rate (Table 2).  Admissions for 348 

respiratory diseases, mental health, acute renal failure, dehydration, and heat illness 349 

increased by 20 (42), 2 (6), 5 (10), 8(16), and 4 (10), respectively, on average per day for 350 

HHE span (peak).  Expressed as a percentage of daily mean hospitalizations during the 351 

record for these disease categories, this translates to an increase of 7.7%, 9.8%, 17.7%, 352 

22.5%, and 505% at the peak of the heat wave.   353 

Figure 5b gives the cumulative statewide health impact for each of the 19 events.  354 

To quantify the cumulative impact, hospitalization anomalies (y’) were summed over the 355 

span of each event and this value was compared to all non-HHE days in the historical 356 

record spanning the same duration.  For example, the impact of the 2006 July 13-26 event 357 

was determined by comparing that 14-day sum of hospitalization anomalies to those 358 

obtained by resampling the record for all consecutive, non-HHE days spanning 14 days.  359 

Similarly, the 2000 June 12-16 event was compared to non-HHE days spanning 5 days.  360 

The health impact is said to be significant (using the 90
th

 percent level for a one-sided 361 

test) if it falls above the 95
th

 percentile of the resampled distribution.  From Figure 5b, a 362 

significant statewide health impact is observed for 15 of the 19 HHEs identified.  Taken 363 

together, these 15 events are associated with more than 11,000 excess hospitalizations 364 

statewide.   The number of excess hospitalizations associated with each of these 15 365 
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events (Table 1) ranges from 367 for the short, 3-day 2006 HHE to 1657 for one 17-day, 366 

heat wave in September 2004.  During the notorious 14-day July 2006 heat wave 367 

affecting most of the state, there were 1254 excess hospitalizations in California, a result 368 

that is similar to Knowlton et al. (2009) which found 1182 excess hospitalizations and 369 

16,166 excess emergency department visits.  The magnitude of the impact from one event 370 

to another is strongly associated with its duration.  By looking at the health impact in 371 

terms of quantiles of the resampled data, which accounts for duration, we see that the 372 

health impact of these 15 events are all in the top 3%, with several in the top 1%, as 373 

compared to non-HHE days spanning the same duration (Table 1), i.e. they are highly 374 

significant.  375 

 376 

c. Regional Health Impact 377 

Table 3 shows the regional impacts for HHE span and peak for each of the six 378 

California subregions using a two-sample t-test comparing non-HHE days with HHE 379 

span and HHE peak (same methodology as for disease categories in Table 2).  A 380 

significant health impact is observed for four of the six regions.  Daily admissions for the 381 

Coastal South, Coastal North, Central Valley, and Southern Deserts increased by 50 (71), 382 

23 (47), 24 (43), and 4 (9), respectively, for HHE span (peak).  Expressed as a percentage 383 

of average daily hospitalizations for these regions, this translates to an increase of 5.6%, 384 

8.1%, 10.5%, and 6.3% at the peak of the heat wave.   While the largest impact in terms 385 

of total admissions is greatest for the Coastal South owing to its larger population, the 386 

Coastal North contributes disproportionately to the health impact during heat waves. This 387 

region represents 18% of all California hospitalizations during 1999-2009, but this 388 
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increases to 27% during heat waves.  There are a few possible explanations for this.  389 

First, a poor acclimation to extreme heat both physiologically and through air 390 

conditioning use (air conditioning coverage is low in the Coastal North; for example, San 391 

Francisco has only 21% air conditioning saturation, Sailor and Pavlova 2003).  Second, 392 

residents typically have easier access to hospitals and better insurance coverage than 393 

other parts of the state making it more likely they would seek medical treatment.  Third, 394 

heat waves in the Coastal North are hotter relative to the mean climate (c.f. Figure 4b) 395 

simply due to the regional temperature distribution.   396 

 Figure 6 gives the cumulative health impact of the 19 HHEs for each California 397 

subregion using the same resampling method described above.  Eighteen HHEs are 398 

associated with a significant health impact in at least one subregion of California (7-17 399 

Aug 2009 is the only exception).  There is very little impact seen in the deserts with only 400 

two (one) events associated with a significant health impact in the Southern Deserts 401 

(Mojave).  This result is likely due to the fact that CC1 does not well represent desert heat 402 

waves, especially for the Mojave (c.f. Figure 2).   CC1 also does poorly in representing 403 

heat waves in the Northern Forests, and here we see only a modest impact (four 404 

significant events).  Our methodology is designed to explain the strongest co-405 

relationships between heat and heath in California.  However, not all heat waves are 406 

represented.  There are likely some additional, more regionally focused heat waves that 407 

may have a regional health impact but these would need to be studied on a smaller spatial 408 

scale. 409 

For the remaining regions, there is a strong health signal.  Morbidity in the 410 

Central Valley was significantly impacted during 9 events and the Coastal North and 411 
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South each experienced 11 impactful heat waves. The Coastal South, the most populous 412 

region, shows the strongest overall impact in terms of patient numbers, with excess 413 

hospitalizations in the range 300 to more than 800 depending on event.  In general, 414 

excess hospitalizations in the Coastal South are 1.5-3 times those in the Coastal North or 415 

Central Valley where the most intense heat waves cause typically 300-400 excess 416 

hospitalizations.  In terms of quantiles of historical observations (color scale, Figure 6), 417 

which equalizes the regions in terms of population, the health impact is similar across the 418 

three regions with a mean percentile rank of 86-89% for the 19 events, although the 419 

coastal regions see a larger number of impacts in the top 5% (i.e. more are significant at 420 

the 90% level).   421 

Figure 7a shows the peak temperatures for those HHEs identified as having a 422 

significant regional health impact (significant HHEs, hereinafter SHHEs) in the context 423 

of the full Tmax distribution by region and timing within the season, and Figure 7b gives 424 

the results in terms of degrees above normal.   A health impact is seen in the Central 425 

Valley for Tmax in the range of 33-42C (92-108F) depending on month.  For the 426 

Coastal North and South, where mean summertime temperatures are much lower, a health 427 

impact is seen for temperatures reaching 27-36C (81-97F).  Most impacts occur at 428 

temperatures above the 90
th

 percentile in the Central Valley and Coastal North with many 429 

falling above the 95
th

 or even the 99
th 

percentiles.  An exception is one event (5-9 Sept 430 

2000) affecting the Central Valley when temperatures peaked at 33 C (92 F), which is 431 

approximately the 70
th

 percentile for that region in September.  The Coastal South is 432 

more vulnerable, with health impacts seen for four SHHEs having peak temperatures at 433 

or below the 85
th

 percentile.  Relative to monthly normal conditions, Tmax is elevated by 434 
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an average of 6.1C in the Central Valley, 9.1C in the Coastal North, and 4.5 C in the 435 

Coastal South.  From Figure 7a there are several observations above the 99
th

 percentile 436 

including 11-year highs in the Coastal South that were not associated with a significant 437 

health impact.  We analyzed those 13 days, which spanned five separate events.  Four of 438 

the five events were not identified as a HHE by the CCA methodology, so were not 439 

examined in terms of health impacts.  The reason they did not meet the HHE criteria is 440 

because on the large scale there was no strong correlation between temperatures and 441 

health in California.  However, it is possible there were more localized health impacts. 442 

The fifth event (13-26 July 2006) was identified as a HHE but no significant health 443 

impact was found for the Coastal South.  This was a particularly impactful heat wave 444 

statewide (c.f. Table 1), and in the south coast there were 3 days above the 99
th

 percentile 445 

and an 11-year high that occurred on July 22.  While the health impact was not 446 

statistically significant by our criteria, in the Coastal South there were 515 excess 447 

hospitalizations during that 14-day period, which is above the 93
rd

 percentile as compared 448 

to all other 14-day periods in the record.  449 

 450 

d. Effect of Humidity 451 

Current heat warning systems attempt to account for the effect of humidity on 452 

heat wave morbidity and mortality.  The Heat Index uses relative humidity or dew point 453 

temperature to estimate the human health impact based on empirical relationships with 454 

mortality.  More sophisticated systems use empirical relationships between morbidity and 455 

forecasted synoptic air masses (e.g. Ebi et al. 2004).  While quantifying the heat-456 

humidity-health relationship is beyond the scope of this study, we attempt to describe the 457 
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relative impact of dry versus humid heat waves using regional anomalies in specific 458 

humidity.  An event is categorized as dry or humid depending on if the daily, regional 459 

specific humidity was below or above normal, respectively.  The anomalies are calculated 460 

using the 1999-2009 May-September climatology. 461 

Figure 8 shows the proportion of hospitalizations by month and heat wave type 462 

for those HHEs found to have a  significant regional impact on health.  For the Central 463 

Valley and Coastal North, humid heat waves account for 65% of the impactful heat 464 

waves in each region (6 of 9 in the Central Valley and 7 of 11 in the Coastal North).   In 465 

terms of health impact, humid heat waves account for 66% of the hospitalizations in each 466 

of these regions with no appreciable difference seen within our sample of impactful 467 

events in terms of health outcome during dry versus humid heat waves.  However, since 468 

health data was used directly in the identification of these events, the fact that the 469 

majority of impactful heat waves are humid suggests that humid heat waves are the more 470 

dangerous variety in the Central Valley and Coastal North.  For the Coastal South, dry 471 

and humid events are approximately equal both in occurrence rate and health impact.  In 472 

terms of seasonal timing, mid-summer events have the strongest impact on health in the 473 

Central Valley, but early-season heat waves have the strongest impact in the coastal 474 

regions.  In general, early and mid-season heat waves tend to be getting stronger and 475 

more frequent in California due to climate change and specifically trending towards the 476 

humid variety (GG2012).  Since the coastal populations show more vulnerability early in 477 

the season due to loss of acclimation over the winter and mortality displacement as 478 

discussed above; and are more prone to heat illness during humid events (at least in the 479 
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northern part of coast), this means heat waves are changing towards the most dangerous 480 

variety in terms of human health.  481 

 482 

5. Discussion and Conclusions 483 

This study investigated the health impacts of recent heat waves from 1999 to 484 

2009.  Using Canonical Correlation Analysis applied to daily maximum temperatures and 485 

hospitalization data we identified 19 heat events spanning 3-15 days in duration that had 486 

a significant impact on human health.  Taken collectively, these events resulted in more 487 

than 11,000 excess hospitalizations statewide.  However, a heat advisory or warning from 488 

the National Weather Service was only issued during six of them.  In terms of individual 489 

heat waves, the 17-day September 2004 heat wave showed the greatest impact, with 1657 490 

excess hospitalizations.  The 14-day July 2006 heat wave and the 15-day July 2003 heat 491 

wave were also very harmful to health with 1254 and 1063 excess hospitalizations, 492 

respectively.  These events were not only long in duration, but were particularly extreme 493 

with temperatures exceeding the 95
th

 percentile for several days.  The 2003 and 2006 494 

events were additionally humid with very high nighttime temperatures that hindered 495 

physiological recovery at night.  Previous research has shown heat waves in the 496 

Southwest are becoming more durable and spatially expansive, especially the humid 497 

variety (Gershunov et al. 2009).  Therefore local and statewide planning is needed to 498 

adequately prepare for these types of events, which can be devastating in terms of health 499 

impacts and can greatly strain resources designated for emergency response.    500 

Regionally, the strongest health impacts were seen in the Central Valley and the 501 

north and south coasts.  While the largest impact in terms of patient numbers is greatest 502 
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for the Coastal South owing to its larger population, the Coastal North is 503 

disproportionately affected by extreme heat.  During heat waves, the Coastal South sees a 504 

5.6% increase in hospitalizations on peak heat wave days while the Coastal North 505 

experiences an increase of 10.5%.  506 

In the Central Valley, temperatures in the range of 33-42C (6.1C above normal, 507 

on average) were associated with a health impact while in both coastal regions we 508 

detected an impact for temperatures in the range of 27-36C (9.1C and 4.5C above 509 

normal, on average, for the Coastal North and Coastal South, respectively). Generally 510 

these temperatures are above the 90
th

 percentile in the Central Valley and Coastal North, 511 

while the Coastal South is more vulnerable with impacts occurring when temperatures are 512 

at or below the 85
th

 percentile.  While the Coastal North appears most vulnerable in terms 513 

of increased hospitalizations (10.5% increase on peak heat waves), the Coastal South 514 

appears to be more vulnerable to lower temperatures.  This could be due to differences in 515 

demographics or access to care. Additionally, there are other factors possibly contributing 516 

to the observed health effects other than high temperatures such as air pollution, Santa 517 

Ana winds, or smoke from wildfires that often accompany dry, late-season heat waves in 518 

the Coastal South.  519 

The relative impact of dry versus humid heat waves was investigated using 520 

regional anomalies in specific humidity.  The results showed that humid heat waves have 521 

a stronger impact on human health in the Central Valley and Coastal North, accounting 522 

for 66% of heat-related excess hospitalizations in both regions.  In the Coastal South 523 

there was an approximately equal impact seen during humid and dry heat waves.  In 524 

terms of seasonal timing, mid-summer events have the strongest impact on health in the 525 
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Central Valley, but early-season heat waves have the strongest impact in the coastal 526 

regions.  Early in the season, coastal California experiences many cloudy and cool days 527 

due to the prominent marine layer, often referred to as “May Grey” or “June Gloom”.  528 

Therefore heat waves during this part of the season would come as a stark contrast to 529 

typical conditions.  530 

These results suggest local percentile thresholds that consider seasonal timing 531 

would be more appropriate for use in issuing heat warnings than the current system, 532 

which uses a single threshold throughout the summer and regional baselines that are 533 

based on only very limited health impact information.  New criteria developed by NWS 534 

San Diego uses a temperature curve based on departures from normal for different 535 

climate zones, therefore incorporating seasonality and local acclimatization. This 536 

approach will address some of the geographic and population differences in vulnerability.  537 

California could also benefit from a multi-tiered system that accounts for the 538 

vulnerabilities of different populations such as outdoor agricultural workers, the elderly 539 

and those with preexisting conditions who have been shown to be especially vulnerable 540 

to heat  (e.g. Trent et al. 2006).  Lower threshold warnings could be issued for these 541 

vulnerable populations.  This type of analysis is beyond the scope of this study, but future 542 

work will take a more localized focus and consider local differences in outcome based on 543 

demographic and other risk factors or exasperating conditions such as air quality, 544 

occurrence of Santa Ana winds or marine layer conditions.  Given that heat waves are 545 

expected to become more frequent and more severe, it is crucial to understand the impact 546 

on human health now so public health officials can respond effectively and plan 547 

adequately for the future.  This is especially true for California, which has a population of 548 
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nearly 40 million with the majority living along the coast where heat acclimation is poor, 549 

air conditioners in homes are sparse (especially in Northern California), and research 550 

shows heat waves will continue to become more intense and more humid.   551 
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Table 1: Heat Health Events and associated statewide health impact.  Bold font indicates 677 

statistical significance at the 90% level.   678 

 679 

Year 

Event Span Peak 

Date 

Duration Excess 

Hosp. 

(Count) 

Excess 

Hosp. 

(Quantile) 

2000 

S2
May 18-24 May 21 7 217 73.4 

S1
*Jun 12-16 Jun 14 5 299 80.6 

Sep 5-9 Sep 7 5 700 99.7 

2001 
S3

May 2-11 May 8 10 959 93.1 
S2

May 29 - Jun 1 May 31 4 460 99.0 

2002 
S2

*Jul 7-13 Jul 9 7 848 97.8 

2003 

May 19-22 May 20 4 845 99.5 
S1

May 27-29 May 28 3 454 99.1 

Jun 24-30 Jun 27 7 717 98.3 

*Jul 8-22 Jul 14 15 1063 97.5 

Sep 10-15 Sep 13 6 629 98.5 

Sep 17-23 Sep 22 7 839 99.0 

2004 Sep 1-17 Sep 7 17 1657 99.8 

2006 
Jul 7-9 Jul 8 3 367 99.1 

S2
*Jul 13-26 Jul 23 14 1254 97.8 

2007 May 6-9 May 7 4 327 99.0 

2008 *May 13-18 May 16 6 903 99.2 

2009 
*May 15-18 May 17 4 160 88.5 

Aug 7-17 Aug 10 11 228 78.4 

* NWS Heat advisory or warning issued 

S1, S2, S3: Stage 1, 2, or 3 electrical alert issued by the California ISO 

 680 

681 
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Table 2: Average daily increase in hospital admissions with confidence intervals for 682 

HHE span and peak from a two-sample t-test.  An asterisk indicates a non-significant 683 

health impact (at the 95% level).  Also shown are the daily average number of 684 

hospitalizations in California over the 1999-2009 record, and the excess admissions seen 685 

on peak heat wave days expressed as percent above normal.  686 

Outcome Category ICD 

Code 

Daily 

Average 

Hospital-

izations  

1999-2009 

Average Excess Daily Morbidity 

(Count) 

Average 

Excess Daily 

Morbidity 

(Percent 

above 

normal) 

   HHE span HHE peak HHE peak 

All Causes  2519 102.2  

(101.6-102.6) 

172.8  

(171.5-174.2) 

6.9 

Cardiovascular 

Diseases 

     

All Cardiovascular 

diseases 

390:459 1042 36.1 (35.8-36.3) 48.7 (48.1-49.3) 4.7 

Ischemic heart 

disease 

410:414 312 14.8 (14.7-15.0) 19.1 (18.7-19.6) 6.1 

Acute myocardial 

infarction 

410 137 3.9 (3.8-3.9) 6.8 (6.6-7.0) 5.0 

Cardiac 

dysrythmias 

427 127 2.9 (2.8-3) 6.4 (6.3-6.6) 5.0 

Essential 

hypertension 

401 15 *0.2 (0.17-0.22) *0.4 (0.4-0.4) 2.6 

Ischemic stroke 433:436 151 5.9 (5.8-5.9) 7.4 (7.3-7.6) 4.9 

Other Diseases      

Respiratory 

diseases 

460:519 541 19.7 (19.5-19.9) 41.6 (41.1-42.1) 7.7 

Acute renal failure 584 57 4.5 (4.4-4.5) 10.1 (9.9-10.3) 17.7 

Mental Health 290:319 64 2.1 (2.1-2.2) 6.3 (6.2-6.4) 9.8 

Dehydration 276.5 71 7.9 (7.8-7.9) 15.9 (15.7-16.0) 22.5 

Heat illness 992 2 4.3 (4.2-4.3) 10.1 (9.8-10.4) 505 

 687 

 688 

 689 

 690 

691 
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Table 3: First three columns are as in Table 2 but for the six California subregions using 692 

the all causes outcome category.  693 

 Daily 

Average 

Hospital-

izations 

1999-2009 

Average Excess Daily  

Morbidity 

(Count) 

Average Excess 

Daily  

Morbidity 

(Percent above 

normal) 

  HHE span HHE peak HHE peak 

Central 

Valley 

533 23.5 (23.3-23.7) 43.4 (42.9-43.9) 8.1 

Southern 

Deserts 

148 3.7 (3.6-3.8) 9.4 (9.1-9.6) 6.3 

Coastal 

North 

448 22.9 (22.7-23.1) 46.9 (46.4-47.3) 10.5 

Coastal 

South 

1276 49.7 (49.4-50.1) 70.9 (70.0-71.8) 5.6 

Mojave 62 *1.1 (1.0-1.2) *1.7 (1.5-1.8) 2.7 

Northern 

Forests 

49 *1.4 (1.3-1.4) *0.5 (0.3-0.6) 1.0 

 694 

695 
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Figure Caption List 696 

Figure 1.  (a) PD data, (b) data and weekly+seasonal cycle for 2006, (c) filtered PD data 697 

after removing trend, seasonal and weekly cycles and holiday effects shown for 2006.  698 

 699 

Figure 2.  (a) Canonical variables CC1Tmax and CC1Health and (b) homogeneous 700 

correlation maps showing the correlation between the input data vectors and their 701 

associated canonical variables (e.g. correlation between x’ and CC1Tmax and between y’ 702 

and CC1Health). The input data were regionalized using empirically defined California 703 

subregions: Central Valley (CV), Southern Deserts (SD), Coastal North (CN), Coastal 704 

South (CS), Northern Forests (NF) and Mojave (MJ).   705 

 706 

Figure 3.  Green and black time series represent the canonical variables shown for each 707 

year of the analysis period.  The 15-day running correlation between CC1temp and CC1hosp 708 

is shown in blue if statistically significant.  Heat-Health Events are shown in red. 709 

 710 

Figure 4. (a) Regionally averaged peak temperature for Tmax and Tmin during each 711 

HHE, with the number of days exceeding the summertime 95
th

 percentile shown in blue 712 

text and an asterisk (*) indicating if the monthly 95
th

 percentile was reached (b) 713 

standardized Tmax and Tmin anomaly on peak day.  Note here peak day is calculated 714 

regionally for each variable (Tmin and Tmax do not necessarily peak on the same day) 715 

and may vary slightly from the peak day given in Table 1.  716 

 717 
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Figure 5.  (a) Boxplot showing statewide hospitalization anomalies for non-HHE days 718 

(n=1544), HHE span (n=139) and HHE peak (n=19) and (b) morbidity associated with 719 

each event using the resampling method (see text).  In (b), the boxplots show the 720 

distribution of historical non-HHE days spanning the same duration as the HHE and 721 

green markers give the cumulative health impact for each HHE (filled markers indicate 722 

statistical significance at the 90% level). 723 

 724 

Figure 6.  As in Figure 5b but for the six California subregions and with a color scale 725 

showing the impact in terms of the percentile of the resampled distribution. 726 

 727 

Figure 7.  (a) Distribution of Tmax by region and season and showing Tmax on the peak 728 

day of those HHEs identified as having a significant health impact, and (b) showing 729 

results as C above normal. 730 

 731 

Figure 8. Proportion of hospitalizations by month and heat wave type.  Individual events 732 

are separated by white horizontal lines. 733 

734 
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 736 

 737 

 738 

Figure 1.  (a) PD data, (b) data and weekly+seasonal cycle for 2006, (c) filtered PD data 739 

after removing trend, seasonal and weekly cycles and holiday effects shown for 2006.  740 

  741 
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a) 

 

b) 

          
 742 

Figure 2.  (a) Canonical variables CC1Tmax and CC1Health and (b) homogeneous 743 

correlation maps showing the correlation between the input data vectors and their 744 

associated canonical variables (e.g. correlation between x’ and CC1Tmax and between y’ 745 

and CC1Health). The input data were regionalized using empirically defined California 746 

subregions: Central Valley (CV), Southern Deserts (SD), Coastal North (CN), Coastal 747 

South (CS), Northern Forests (NF) and Mojave (MJ).   748 
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 750 

Figure 3.  Green and black time series represent the canonical variables shown for each 751 

year of the analysis period.  The 15-day running correlation between CC1temp and CC1hosp 752 

is shown in blue if statistically significant.  Heat-Health Events are shown in red. 753 
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a) Peak Temperature b) Standardized Anomaly 

  

  

Figure 4.  (a) Regionally averaged peak temperature for Tmax and Tmin during each 755 

HHE, with the number of days exceeding the summertime 95
th

 percentile shown in blue 756 

text and an asterisk (*) indicating if the monthly 95
th

 percentile was reached (b) 757 

standardized Tmax and Tmin anomaly on peak day.  Note here peak day is calculated 758 
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regionally for each variable (Tmin and Tmax do not necessarily peak on the same day) 759 

and may vary slightly from the peak day given in Table 1.  760 

 761 

 762 
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Figure 5.  (a) Boxplot showing statewide hospitalization anomalies for non-HHE days 764 

(n=1544), HHE span (n=139) and HHE peak (n=19) and (b) morbidity associated with 765 

each event using the resampling method (see text).  In (b), the boxplots show the 766 

distribution of historical non-HHE days spanning the same duration as the HHE and 767 
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green markers give the cumulative health impact for each HHE (filled markers indicate 768 

statistical significance at the 90% level). 769 
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Figure 6.  As in Figure 5b but for the six California subregions and with a color scale 771 

showing the impact in terms of the percentile of the resampled distribution. 772 
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Figure 7.  (a) Distribution of Tmax by region and season and showing Tmax on the peak 774 

day of those HHEs identified as having a significant health impact, and (b) showing 775 

results as C above normal. 776 

 777 
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 779 

Figure 8.  Proportion of hospitalizations by month and heat wave type.  Individual events 780 

are separated by white horizontal lines. 781 

 782 


