

Center for Western Weather and Water Extremes SCRIPPS INSTITUTION OF OCEANOGRAPHY

Mesoscale Frontal Waves Associated with Landfalling Atmospheric Rivers

FIRO Science Task Group Workshop

May 30, 2017

Andrew Martin, Brian Kawzenuk, Julie Kalansky, Anna Wilson, F. Martin Ralph

Contacts: mc@ucsd.edu, anna-m-wilson@ucsd.edu, mralph@ucsd.edu

Study Goals

- 1. Establish a non-exhaustive case list of AR impacting the ARO that were also associated with MFW (AR+MFW).
- 2. Report on the relative frequency of MFW+AR, and differences in AR strength, duration, precipitation in these cases.
- 3. Identify synoptic scale weather regimes that support MFW formation and secondary cyclone development when there is a landfalling AR.
- 4. Estimate the impact of MFW on AR precipitation forecast skill during landfalling AR
- 5. Investigate the growth mechanisms that allow development of MFW into a secondary cyclone when an AR is present.

What is a Mesoscale Frontal Wave (MFW)?

A moderate to strong AR initially made landfall near the central OR coast on 12/10/2014 @ 06 UTC

Mesoscale Frontal Waves on AR

Developing an AR+MFW Case List

Criteria

- 1. AR Criteria
 - AR conditions must be met at BBY ARO and correct AR geometry verified.
- 2. Moderate AR or Greater
 - AR must meet or exceed moderate AR thresholds using ARO vapor flux or sounding IVT.
- 3. Impactful AR Criteria
 - AR must produce > 2 inches precip. at Cazadero or in Russian River Watershed.
- 4. AR+MFW: 1+2+3 plus...
 - An IWV "cusp" must be observed on primary landfalling AR.
 - A trough in sea-level pressure (identified in reanalysis) must develop offshore "near" existing cold front and persist or deepen for at least 24 hours.
- 5. AR w/o MFW: 1+2+3 plus...
 - Any cusp or secondary trough indicated in SSM/I must not occur on primary landfalling AR.

Developing an AR+MFW Case List 2

Methods			MFW on AR		AR w/o MFW			
 First ID includes Observations Only: SSM/I Composite 			02/26/2006		12/26/2006		03/13/2012	
 BBY ARO IWV Gauge Precip CW3E Balloo available. AR strength criteri AR w/o MFW criteri verified using ERA 	RO IWV, Vapor Precip. Balloon Soun ole. criteria, MFV	r Flux Avg. +/- Std. dev.	11/13/2	2006 MFW or	12/2/200	AR w/o	03/2//201 MFW	4
		ST Precip. @ CZC (mm)		122.1 +/- 92.4		90.2 +/-	- 59.0	5
		ST BUF @ ARO (cm m s ⁻¹ hr)		1223.6 +/- 547.8		866.5 +/-	- 343.7	
	criteria we ERA-Interir	Max IVT (kg m ⁻¹ s ⁻¹)		674.8 +/- 179.7		602.2 +/- 138.2		
Reanalysis		Duration @ ARO (hr)		37 +/- 17.5		24.4 +/- 9.3		
identified from 2006 – 2 10 are MFW on AR; 16 MFW, 10 had secondary		Min SLP of MFW (hPa)		995.2 +/- 14.1				
		re AR w/o troughs	03/05/2	2016	03/15/20	011		
but were rejec	ted.		03/09/2010		01/20/2012			

How Can MFW Modulate AR Impact?

GOES IR Imagery

"A multi-scale observational case study of a Pacific atmospheri river exhibiting tropical-extratropical connections and a mesoscale frontal wave"

Mesoscale Frontal Waves on AR

How Can MFW Modulate AR Impact?

Poorest precipitation and streamflow forecasts were issued less than 24 hr prior to event!

First forecast after the MFW developed.

Russian River at Guerneville (GUEC1)

~10 ft difference 1 - Day 5 – Day 3 – Day in peak stage **QPF** Verification (QPF - QPE) **QPF** Verification (QPF - QPE) **QPF** Verification (QPF - QF 30 4 am PST (ff Dec 10 – Stage 20 Flood Stage 4 am PST Monitor Stage Dec 11 >3" + -X 10 Dec Forecast 10 -X 8 Dec Forecast -Observations 0 Precipitation Verification (inches) (forecast - observed) -3.00 -2.00 -1.00 0.00 +1.00+2.00 +3.00+4.00-4.00 Day/Hour (PST)

What changed? MFW developed along landfalling AR.

Mesoscale Frontal Waves on AR

Synoptic Pattern May Aid Prediction of MFW on AR

Each Composite mean is calculated at beginning of AR conditions measured at the BBY ARO.

Mesoscale Frontal Waves on AR

*Data from ERA-Interim Reanalysis

Review

- MFW often form on AR of moderate or greater strength in the NE Pacific
- MFW precipitation forecasts appear to be much less skillful when MFW form on landfalling AR then when they do not.
- In part, this may be because MFW formation lengthens local AR conditions
- Certain synoptic scale patterns, including:
 - The location and movement of the Aleutian / Gulf of Alaska Low
 - Extent of the Eastern Pacific Subtropical High
 - Location and orientation of the Pacific Jet Stream

Favor MFW development on N CA Landfalling AR

Backup Slides

Mesoscale Frontal Waves on AR

QPF Skill During MFW on AR

Mesoscale Frontal Waves on AR

Formation Mechanisms

MFW on AR Case 2014-02-08 (Neiman et al., 2016)

Mesoscale Frontal Waves on AR

Formation Mechanisms

MFW on AR Case 2014-12-10 (Another AGU storm)

Mesoscale Frontal Waves on AR

ARO Perspectives

Using Hourly ARO Observations,

Can we detect how precipitation Forcing (water vapor flux in the orographic controlling layer) may differ from AR w/ MFW to AR w/o MFW?

Test for independent distributions (K-S Test) of Bulk Upslope Flux, and its components

Mesoscale Frontal Waves on AR

ARO Perspectives II

Mesoscale Frontal Waves on AR