

Center for Western Weather and Water Extremes SCRIPPS INSTITUTION OF OCEANOGRAPHY

Evaluation of SMAP Soil Moisture Products in California Using In-situ Observations from the Hydrometeorology Testbed

Maryam A. Lamjiri¹, Scott L. Sellars¹, Narendra N. Das², Brian M. Henn¹, F. Martin Ralph¹

¹Scripps Institution of Oceanography, University of California San Diego ² Jet Propulsion Laboratory, California Institute of Technology

30 May, 2017

Introduction-Soil Moisture Active Passive (SMAP)

- Launched on March 31, 2015.
- provides global map of (surface) soil moisture observations every 2-3 days.
- Radiometer operating at L-band frequency (1.4 GHz)
 - Retrieves soil moisture through moderate vegetation conditions.
 - Independent of cloud cover and night or day.
 - Deeper sensing depth relative to C-band and X-band.
- Benefits from RFI mitigation approach.

Data

Soil Moisture Products	Depth	Spatial Resolution	Temporal Resolution	Limitations
SMAP Level 3	Top 5cm	36km (9km)	2-3 days	 Low temporal and spatial resolution Limited to the top 5cm Adverse impacts of surface flags
SMAP Level 4	5 cm	9km	3 hours	 Model-derived Errors in representation of soil properties and processes
In-Situ Observations*	10 cm	Point-Scale	2 minutes	Representativeness issueDifferent sensing depth

* These data are currently going through another level of QC, this analysis will be redone with the revised data, so the results may change.

Data-Surface Flags

- Ocean Proximity
 - Grid cells within 36km of the coast.
- Dense Vegetation
 - $5 < VWC < 30 \text{ kg/m}^2$
- Urban Area
 - 0.5< Urban fraction < 1
- Static Water
 - 5% < Grid cell water fraction < 10%

Results-Annual Performance

- Both capture seasonality of surface soil moisture.
- Low dry-down rates of SMAP_L4
 - Positive bias during late winter and spring season.
- Reasonable agreement, despite presence of dense vegetation (a)

Results-Correlation

- SMAP_L3
 - Strong correlations during DJF, MAM, and SON.
 - Weak correlations during JJA, possibly due to very dry soils.
- SMAP_L4

5

- Strong correlations during JJA, SON, and MAM.
- Weak correlations during DJF, possibly due to low dry-down rates.

Results-ub-RMSE

- SMAP mission requirement
 - ub-RMSE< $0.04 \text{ m}^{3}\text{m}^{-3}$
- ub-RMSE values below/or close to $\frac{\overline{4}}{5}$ the mission requirement despite presence of dense vegetation.
- Low (high) ub-RMSE during summer (winter).
- Better overall performance of SMAP_L3 relative to SMAP_L4

Results-Impacts of Dense Vegetation

- Presence of Dense Vegetation surface flag throughout the year.
- Good agreement of SMAP_L3 products with in-situ observations despite presence of dense vegetation.
- No significant difference between NDVI at the sites with and without dense vegetation.
- Dense vegetation doesn't have strong adverse impacts on quality of SMAP_L3 products in the regions studied here.

Discussion

- Overall, SMAP_L3 products are in good agreement with in-situ observations.
 - Capture seasonality of surface soil moisture.
 - Respond to precipitation events.
 - High correlation coefficients and low ub-RMSE during DJF, MAM, and SON.
 - Are not strongly affected by dense vegetation.
- Assimilating SMAP_L3 products into the hydrologic models to potentially advance streamflow predictions.
- Results are based on soil moisture observation during one year with relatively dry conditions.
- More in-situ observations sites and longer period of SMAP observations are required to confirm these results and remove the bias between SMAP products and in-situ observations.

