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Abstract: This chapter provides a broad introduction to
Bayesian data assimilation that will be useful to practi-
tioners in interpreting algorithms and results, and for the-
oretical studies developing novel schemes with an
understanding of the rich history of geophysical data
assimilation and its current directions. The simple case of
data assimilation in a ‘perfect’model is primarily discussed
for pedagogical purposes. Some mathematical results are
derived at a high level in order to illustrate key ideas about
different estimators. However, the focus of this chapter is
on the intuition behind these methods, where more formal
and detailed treatments of the data assimilation problem
can be found in the various references. In surveying
a variety of widely used data assimilation schemes, the
key message of this chapter is how the Bayesian analysis
provides a consistent framework for the estimation prob-
lem and how this allows one to formulate its solution in
a variety of ways to exploit the operational challenges in
the geosciences.

3.1 Introduction

In applications such as short- to medium-range weather
prediction, data assimilation (DA) provides a means to
sequentially and recursively update forecasts of a time-
varying physical process with newly incoming information
(Daley, 1991; Kalnay, 2003; Asch et al., 2016), typically
Earth observations. The Bayesian approach to DA is widely
adopted (Lorenc, 1986) because it provides a unified treat-
ment of tools from statistical estimation, non-linear
optimisation, and machine learning for handling such
a problem. This chapter illustrates how this approach can
be utilised to develop and interpret a variety of widely used
DA algorithms, both classical and those at the current state-
of-the-art.

Suppose that the time-dependent physical states to be
modelled can be written as a vector, xk 2ℝNx , where
k labels some time tk. Formally, the time-evolution of
these states is represented with the non-linear map M ,

xk ¼Mkðxk�1; λÞ þ ηk; ð3:1Þ

where: (i) xk�1 is the state variable vector at an earlier
time tk�1; (ii) λ is a vector of uncertain static physical
parameters but on which the time evolution depends;
and (iii) ηk is an additive (for simplicity but other
choices are possible), stochastic noise term, representing
errors in our model for the physical process. Define
Δt :¼ tk � tk�1 to be a fixed-length forecast horizon in this
chapter, though none of the following results require this to
be fixed in practice.

The basic goal of sequential DA is to estimate the random
state vector xk, given a prior distribution on ðxk�1; λÞ, and
given knowledge of Mk and knowledge of how ηk is statis-
tically distributed. At time tk�1, a forecast is made for the
distribution of xk utilising the prior knowledge, which
includes the physics-based model. For simplicity, most of
this chapter is restricted to the case where λ is a known
constant, and the forecast model is perfect, that is,

xk ¼Mkðxk�1Þ: ð3:2Þ

However, a strength of Bayesian analysis is how it easily
extends to include a general treatment of model errors and
the estimation of model parameters (see, e.g., Asch et al.
(2016) for a more general introduction).

While a forecast is made, one acquires a collection of
observations of the real-world process. This is written as the
observation vector yk 2ℝNy , which is related to the state
vector by

yk ¼ HkðxkÞ þ ϵk: ð3:3Þ

The (possibly non-linear) map Hk : ℝ
Nx!ℝNy relates the

physical states being modelled, xk, to the values that are
actually observed, yk. Typically, in geophysical applica-
tions, observations are not 1 : 1 with the state variables;
while the data dimension can be extremely large, Ny ≪Nx,
so this information is sparse relative to the model state
dimension. The term ϵk in Eq. (3.3) is an additive, stochastic
noise term representing errors in the measurements, or
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a mismatch between the state variable representation and
the observation (the representation error, Janjić et al., 2018).

Therefore, sometime after the real-life physical system has
reached time tk, one has a forecast distribution for the states
xk, generated by the prior on xk � 1 and the physics-based
model M , and the observations yk with some associated
uncertainty. The goal of Bayesian DA is to estimate the
posterior distribution for xk conditioned on yk, or some
statistics of this distribution.

3.2 Hidden Markov Models and Bayesian Analysis

3.2.1 The Observation-Analysis-Forecast Cycle
Recursive estimation of the distribution for xk conditional
on yk (i.e. assuming yk is known) can be described as an
observation-analysis-forecast cycle (Trevisan and Uboldi,
2004). Given the forecast-prior for the model state, and the
likelihood function for the observation, Bayes’ law updates
the prior for the modelled state to the posterior conditioned
on the observation. Bayes’ law is a simple re-arrangement of
conditional probability, defined by Kolmogorov (2018) as

PðAjBÞ :¼ PðA; BÞPðBÞ ; ð3:4Þ

for two events A and B where the probability of B is non-
zero. Intuitively, this says that the probability of an eventA,
given knowledge that an event B occurs, is equal to the
probability of A occurring relative to a sample space
restricted to the event B. Using the symmetry in the joint
event PðA;BÞ ¼ PðB;AÞ, Bayes’ law is written

PðAjBÞ ¼ PðBjAÞPðAÞPðBÞ : ð3:5Þ

In the observation-analysis-forecast cycle, A is identified
with the state vector (seen as a random vector) taking its
value in a neighbourhood of xk, and B is identified with the
observation vector (seen as a random vector) taking its value
in a neighbourhood of yk. The power of this statement is in
how it describes an ‘inverse’ probability – while the poster-
ior,PðAjBÞ, on the left-hand-sidemay not be directly access-
ible, often the likelihood PðBjAÞ and the prior PðAÞ are easy
to compute, and this is sufficient to develop a variety of
probabilistic DA techniques.

A conceptual diagram of this process is pictured in
Fig. 3.1. Given the initial first prior (represented as the first
‘posterior’ at time t0), a forecast prior for the model state at
t1, PðAÞ, is produced with the numerical model. At the
update time, there is an (possibly indirect and noisy) obser-
vation of the physical state with an associated likelihood
PðBjAÞ. The posterior for the model state conditioned on
this observation PðAjBÞ, commonly denoted the analysis in
geophysical DA, is used to initialise the subsequent

numerical forecast. Recursive estimates of the current mod-
elled state can be performed in this fashion, but a related
question regards the past states. The newly received obser-
vation gives information about the model states at past
times and this allows one to produce a retrospective poster-
ior estimate for the past states. Recursive estimation of the
present state using these incoming observations is com-
monly known as filtering. Conditional estimation of a past
state given a time series including future observations is
commonly known as smoothing.

It is important to recognise that the filtering
probability density function (pdf) for the current time
pðxkjyk; yk�1; yk�2;…Þ is actually just a marginal of the
joint posterior pdf over all states in the current data assimi-
lation window (DAW) (i.e. the window of lagged past and
current states being estimated). In Fig. 3.1, the DAW is the
time window ft1; t2; t3g. The conditional pdf for the model
state at time t3, given observations in the DAW, is written in
terms of the joint posterior as

pðx3j y3; y2; y1Þ ¼∭ pðx3; x2; x1; x0j y3; y2; y1Þ dx2dx1dx0;

ð3:6Þ

by averaging out the past history of the model state from the
joint posterior in the integrand. A smoothing estimate may
be produced in a variety of ways, exploiting different for-
mulations of the Bayesian problem. One may estimate only
a marginal pdf as on the left-hand-side of Eq. (3.6), or the
entire joint posterior pdf as in the integrand in Eq. 3.6
(Anderson and Moore, 1979; Cohn et al., 1994; Cosme
et al., 2012). The approach chosen may strongly depend on
whether the DAW is static or is advanced in time.
Particularly, if one produces a smoothing estimate for the
state at times t1 through t3, one may subsequently shift the
DAW so that, in the new cycle, the posterior for times t2

Forecast-
prior

Observation
likelihood

43210

Physical model / observed state

Δt

Posterior

Legend

Figure 3.1 Conceptual diagram of the observation-analysis-
forecast cycle. The y-axis represents a variable of the state and
observation vectors; the x-axis represents time. Ellipses represent
the spread of the observation/posterior/forecast errors. Original
figure, adapted from Carrassi et al. (2018).
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through t4 is estimated: this type of analysis is known as
fixed-lag smoothing. This chapter considers how one can
utilise a Bayesian maximum a posteriori (MAP) formalism
to efficiently solve the filtering and smoothing problems,
using the various tools of statistical estimation, non-linear
optimisation, and machine learning.

3.2.2 A Generic Hidden Markov Model
Recall the perfect physical process model and the noisy
observation model,

xk ¼Mk ðxk�1Þ; ð3:7aÞ

yk ¼ Hk ðxkÞ þ ϵk: ð3:7bÞ

Denote the sequence of the process model states and obser-
vation model states between time tk and time tl, for k < l, as

xl:k :¼ fxl; xl�1; . . . ; xkg; yl:k :¼ fyl; yl�1; . . . ; ykg: ð3:8Þ

For arbitrary l 2ℕ, assume that the sequence of observation
error

fϵl; ϵl�1; . . . ;ϵ�1g ð3:9Þ

is independent-in-time (i.e. a white process).
This formulation is a type of hiddenMarkov model, where

the dynamic state variables xk are known as the hidden
variables because they are not directly observed.
A Markov model is a type of ‘memoryless’ process,
described this way because of how the conditional probabil-
ity for the state is represented between different times (Ross,
2014, chapter 4). Particularly, if xk:1 is aMarkov process, the
Markov property is defined as

pðxkjxk�1:0Þ ¼ pðxkjxk�1Þ: ð3:10Þ

Equation (3.10) says that, given knowledge of the state xk�1,
the conditional probability for xk is independent of the past
history of the state before time tk�1, representing the prob-
abilistic analogue of an initial value problem.

Applying theMarkov property recursively with the defin-
ition of the conditional pdf yields

pðxL:0Þ ¼ pðx0Þ∏
L

k¼1
pðxkjxk�1Þ: ð3:11Þ

Therefore, the joint pdf for a forecast of the model state can
be written as the product of the first prior at time t0, repre-
senting the uncertainty of the data used to initialise the model
forecast, and the product of the Markov transition pdfs,
describing the evolution of the state between discrete times.

With the perfect state model, as in Eq. (3.7a), the transi-
tion probability for some subset dx⊂ℝNx is written

Pðxk 2 dxjxk�1Þ ¼ δMkðxk�1ÞðdxÞ; ð3:12Þ

with δυ referring to the Dirac measure at υ2ℝNx . The Dirac
measure satisfies

ð
f ðxÞδυðdxÞ ¼ f ðυÞ; ð3:13Þ

where this is a singular measure, to be understood by the
integral equation. Accordingly, the transition pdf is often
written proportional as

pðxkjxk�1Þ∝ δfxk �Mkðxk�1Þg; ð3:14Þ

where δ represents the Dirac distribution. Heuristically, this
is known as the ‘function’ defined by the property

δϵðxÞ ¼
1

ϵ
x2 ½�ϵ;þϵ�

0 else

; δðxÞ ¼ lim
ϵ!0þ

δϵðxÞ:

8<: ð3:15Þ

However, this is just a convenient abuse of notations, as the
Dirac measure does not have a pdf with respect to the
standard Lebesgue measure. Rather, the Dirac distribution
is understood through the generalised function theory of
distributions (Taylor, 1996, section 3.4) as a type of integral
kernel satisfyingð
f ðxkÞδfxk �Mkðxk�1Þgdxk ¼ f ðMkðxk�1ÞÞ: ð3:16Þ

Equation (3.16) represents the existence and uniqueness of
the solution to an initial value problem in deterministic
systems of ordinary and partial differential equations,
where the knowledge of the state xk�1 completely determines
the state xk via the perfect forecast modelMk. Particularly,
there is probability 1 of the state following the unique
solution to the time evolution, and probability 0 of all
other outcomes. Each Markov transition pdf represents
the evolution of an initial condition with respect to the
dynamical model, conditional ultimately on an uncertain
outcome of the initial data from the first prior. While
the perfect model assumption is used for simplicity, the
decomposition of the forecast pdf can be derived for
erroneous models under the additional assumption that
the model errors are independent-in-time. Like the
decomposition of the forecast pdf, for the observation
likelihood we can write

pðykjxk; yk�1:1Þ ¼ pðykjxkÞ; ð3:17Þ

due to the independence assumption on the observation
errors, and the relationship between xk and yk. This
says that the knowledge of the physical state xk com-
pletely determines the likelihood of the observation yk.
Indeed,

ϵk ¼ yk �HkðxkÞ; ð3:18Þ

which follows a known distribution and is independent
of the other observation error outcomes by assumption.

Consider thus how to estimate the filtering pdf pðxkjyk:1Þ.
Using the definition of the conditional pdf, one has
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pðxkjyk:1Þ ¼
pðyk:1; xkÞ
pðyk:1Þ

: ð3:19Þ

Rewriting these pdfs as conditional pdfs, and by using the
independence assumption,

pðxkj yk:1Þ ¼
p
	
yk; ðxk; yk�1:1Þ



pð yk:1Þ

ð3:20aÞ

¼ pð ykjxk; yk�1:1Þpðxk; yk�1:1Þ
pð yk:1Þ

¼ pð ykjxkÞpðxk; yk�1:1Þ
pðyk:1Þ

: ð3:20bÞ

Writing the joint pdfs again in terms of conditional pdfs

pðxkjyk:1Þ ¼
pð ykjxkÞpðxkj yk�1:1Þpð yk�1:1Þ

pð ykj yk�1:1Þpð yk�1:1Þ
ð3:21aÞ

¼ pð ykjxkÞpðxkj yk�1:1Þ
pð ykj yk�1:1Þ

: ð3:21bÞ

Now, suppose that the posterior pdf pðxk�1jyk�1:1Þ at the last
observation time tk�1 is already computed – then the model
forecast of this pdf is given by averaging over the state at
time tk�1 with respect to the Markov transition pdf,

pðxkj yk�1:1Þ ¼
ð
pðxkjxk�1Þpðxk�1j yk�1:1Þ dxk�1; ð3:22Þ

yielding the forecast-prior. The filtering pdf, on the left-
hand-side of Eq. (3.21) is written in terms of: (i) the
likelihood of the observed data given the model forecast,
pð ykjxkÞ; (ii) the forecast-prior given the last best esti-
mate of the state, pðxkjyk�1:1Þ; and (iii) the marginal of the
joint pdf pðyk; xkjyk�1:1Þ, integrating out the hidden
variables,

pð ykjyk�1:1Þ ¼
ð
pð ykjxkÞpðxkj yk�1:1Þ dxk: ð3:23Þ

This type of pdf, only depending on the observations, is
called an evidence (e.g. Carrassi et al., 2017).

Typically, the pdf in the denominator of Eq. (3.21) is
mathematically intractable. However, the denominator is
independent of the hidden variable xk by construction –

the free argument in the pdf on the left-hand-side is the
model state xk and the purpose of the denominator on
the right-hand-side is only to normalise the integral of
the posterior pdf to 1. Instead, as a proportionality
statement,

pðxkjyk:1Þ∝ pðykjxkÞpðxkjyk�1:1Þ; ð3:24Þ

one can devise the Bayesian MAP estimate as the choice
of xk that maximises the posterior pdf, but written in
terms of the two right-hand-side components in Eq.
(3.24). For the purpose of maximising the posterior

pdf, the denominator leads to insignificant constants
that can be discarded. Thus, in order to compute the
MAP sequentially and recursively in time, one can
develop a recursion in proportionality. However, note
that the evidence can be estimated and used for other
significant purposes still within a Bayesian framework
(Carrassi et al., 2017).

3.2.3 Linear-Gaussian Models
Generally, the filtering pdf pðxkjyk:1Þ has no analytical solu-
tion (i.e. no explicit expression). However, when the models
are linear, that is, both the state and observation models are
written as matrix actions

xk ¼Mkxk�1; ð3:25aÞ

yk ¼ Hkxk þ ϵk; ð3:25bÞ

and the error pdfs are Gaussian:

pðx0Þ ¼ nðx0jx0;B0Þ; pðykjxkÞ ¼ nðykjHkxk;RkÞ; ð3:26Þ

nðzjz;BÞ :¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞNzdetðBÞ

q exp � 1

2
ðz � zÞTB�1ðz � zÞ

� �
;

ð3:27Þ

then the forecast and posterior pdfs are Gaussian at all
times, and are parametrised in terms of their mean and
covariance. In particular, Gaussian distributions are
closed under affine transformations, that is, maps of
the form

f ðxÞ ¼ Axþ b; ð3:28Þ

corresponding to a linear transformation when b is a vector
of zeros, such that b ¼ 0 (Tong, 2012, see theorem 3.3.3). If x
is distributed with pdf pðxÞ ¼ nðxjx;BÞ, then the random
vector y :¼ Axþ b is distributed with pdf

pðyÞ ¼ nðyjAx þ b;ABATÞ: ð3:29Þ

Suppose that the last analysis pdf is given as

pðxk�1jyk�1:1Þ ¼ nðxk�1jxak�1;Ba
k�1Þ; ð3:30Þ

parametrised in terms of the analysis mean xak�1 and analysis
error covariance Ba

k�1. Then, the forecast-prior pdf is writ-
ten as

pðxkjyk�1:1Þ ¼ nðxkjxfk�1;Bf
kÞ; ð3:31Þ

where the forecast mean and forecast error covariance are
defined by

xfk :¼Mkx
a
k�1; ð3:32aÞ

Bf
k :¼MkB

a
k�1M

T
k ; ð3:32bÞ

respectively.
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Similarly, the conditional and marginal distributions
of a Gaussian random vector are also Gaussian and
their pdf has an analytical form. Suppose that z2ℝNz is
an arbitrary Gaussian random vector, partitioned as

z :¼ x
y

� �
pðzÞ :¼ n z

x
y

� �
;

Σxx Σxy

Σyx Σyy

� � �
;

�
ð3:33Þ

with the dimensions given as Nz ¼ Nx þNy and

x; x 2ℝNx ; y; y 2ℝNy ; Σxx 2ℝNx�Nx ; ð3:34aÞ

Σxy ¼ ΣT
yx 2ℝNx�Ny ; Σyy 2ℝNy�Ny : ð3:34bÞ

Then, the general form of the pdf for x conditioned on the
outcome of y is given by the Gaussian

pðxjyÞ ¼ n
�
xjx þ ΣxyΣ

�1
yy ðy� yÞ;Σxx � ΣxyΣ

�1
yy Σyx

�
; ð3:35Þ

where the covariance matrix Σxx � Σxy Σ�1yy Σyx is called the
Schur complement (see, e.g., theorem 3.3.4 of Tong, 2012).
Noting the form of the linear observation model in Eq.
(3.25), and the independence of the observation errors, it is
easy to see that the vector composed of x>k y>k

	 
> is jointly
Gaussian. Relying on the identifications

Σxy ¼ Bf
kH
>
k ; Σyy ¼ HkB

f
kH
>
k þ Rk; ð3:36Þ

the posterior pdf at time tk is derived as the Gaussian with
analysis mean and analysis error covariance given by

xak :¼ xfk þ Bf
kH
>
k ðHkB

f
kH
>
k þ RkÞ�1ðyk �Hkx

f
kÞ; ð3:37aÞ

Ba
k :¼ Bf

k � Bf
kH
>
k ðHkB

f
kH
>
k þ RkÞ�1HkB

f
k: ð3:37bÞ

Defining Kk :¼ Bf
kH
>
k ðHkB

f
kH
>
k þ RkÞ�1 as the Kalman

gain, Eqs. (3.37a,b) yield the classical Kalman filter
(KF) update, and this derivation inductively defines
the forecast and posterior distribution for xk at all
times. The KF is recognised thus as the parametric
representation of a linear-Gaussian hidden Markov
model, providing a recursion on the first two moments
for the forecast and posterior.

This analysis extends, as with the classical KF, easily
to incorporate additive model errors as in Eq. (3.1);
see, for example, Anderson and Moore (1979).
However, there are many ways to formulate the KF
and there are some drawbacks of this approach. Even
when the model forecast equations themselves are lin-
ear, if they functionally depend on an uncertain param-
eter vector, defined MkðλÞ, the joint estimation problem
of ðxk; λÞ can become highly non-linear and an iterative
approach to the joint estimation may be favourable.
Therefore, this chapter develops the subsequent exten-
sions to the KF with the MAP approach, which
coincides with the development in least-squares and
non-linear optimisation.

3.3 Least-Squares and Non-linear Optimisation

3.3.1 The 3-D Cost Function from Gaussian Statistics
As seen in the previous section, the linear-Gaussian analysis
admits an analytical solution for the forecast and posterior
pdf at all times. However, an alternative approach for deriv-
ing the KF is formed using the MAP estimation in propor-
tionality. Consider that the natural logarithm (log) is
monotonic, so that an increase in the input of the argument
corresponds identically to an increase in the output of the
function. Therefore, maximising the posterior pdf as in Eq.
(3.24) is equivalent to maximising

logðpðykjxkÞpðxkjyk�1:1ÞÞ ¼ logðpðykjxkÞÞ
þ logðpðxkjyk�1:1ÞÞ: ð3:38Þ

Given the form of the multivariate Gaussian pdf in Eq.
(3.27), maximising the log-posterior Eq. (3.38) is equivalent
to minimising the following least-squares cost function,
derived in proportionality to the minus-log-posterior:

J KFðxkÞ ¼
1

2
∥xfk � xk∥

2
Bf
k
þ 1

2
∥yk �Hkxk∥

2
Rk
: ð3:39Þ

For an arbitrary positive definite matrixA, theMahalanobis
distance (Mahalanobis, 1936) with respect to A is defined as

∥υ∥A :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
υTA�1υ

p
: ð3:40Þ

These distances are weighted Euclidean norms with:
(i)∥ ∘ ∥Bf

k
weighting relative to the forecast spread; and (ii)

∥ ∘ ∥Rk weighting relative to the observation imprecision. The
MAP state thus interpolates the forecast mean and the
observation relative to the uncertainty in each piece of
data. Due to the unimodality of the Gaussian, and its sym-
metry about its mean, it is clear that the conditional mean xak
is also the MAP state.

While this cost function analysis provides the solution to
finding the first moment of the Gaussian posterior, this does
not yet address how to find the posterior error covariance.
In this linear-Gaussian setting, it is easily shown that the
analysis error covariance is actually given by

Ba
k :¼ ðBf

kÞ
�1 þH>k R

�1
k Hk

h i�1
¼ Ξ�1J KF

; ð3:41Þ

where ΞJ KF refers to the Hessian of the least-squares cost
function in Eq. (3.39), that is, the matrix of its mixed second
partial derivatives in the state vector variables. This is
a fundamental result that links the recursive analysis in
time to the MAP estimation performed with linear least-
squares; see, for example, section 6.2 of Reich and Cotter
(2015) for further details.

A more general result from maximum likelihood estima-
tion extends this analysis as an approximation to non-linear
state and observation models, and to non-Gaussian error
distributions. Define θ̂ to be themaximum likelihood estima-
tor (MLE) for some unknown parameter vector θ2ℝNθ ,
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where θ̂ depends on the realisation of some arbitrarily dis-
tributed random sample of observed data fzigNi¼1. Then,
under fairly general regularity conditions, the MLE satisfies

IðθÞ�
1
2ðθ̂ � θÞ!d Nð0; INθÞ; ð3:42Þ

where: (i) Eq. (3.42) refers to convergence in distribution of
the random vector IðθÞ�

1
2ðθ̂ � θÞ as the sample size N!∞;

(ii) INθ is the identity matrix in the dimension of θ; (iii)
Nð0; INθÞ is the multivariate Gaussian distribution with
mean zero and covariance equal to the identity matrix,
that is, with pdf nðxj0; INθÞ; and (iv) IðθÞ is the Fisher
information matrix. The Fisher information matrix is
defined as the expected value of the Hessian of the minus-
log-likelihood, taken over the realisations of the observed
data fzigNi¼1, and with respect to the true parameter vector θ.
It is common to approximate the distribution of theMLE as

θ̂∼Nðθ; Iðθ̂ÞÞ; ð3:43Þ

where Iðθ̂Þ is the observed Fisher information (i.e. the real-
isation of the Hessian of the minus-log-likelihood given the
observed sample data). This approximation improves in
large sample sizes like the central limit theorem; see, for
example, chapter 9 of Pawitan (2001) for the details of this
discussion. In non-linear optimisation, the approximate dis-
tribution of the MLE therefore relates the geometry in the
neighbourhood of a local minimiser to the variation in the
optimal estimate. Particularly, the curvature of the cost
function level contours around the local minimum is
described by the Hessian while the spread of the distribution
of the MLE is described by the analysis error covariance.

3.3.2 3D-VAR and the Extended Kalman Filter
One of the benefits of the aforementioned cost function
approach is that this immediately extends to handle a non-
linear observation operator Hk as a problem of non-linear
least-squares. When the observations are related non-
linearly to the state vector, the Bayesian posterior is no
longer generally Gaussian, but the interpretation of the
analysis state xak interpolating between a background pro-
posal xfk and the observed data yk relative to their respective
uncertainties remains valid. The use of the non-linear least-
squares cost function can be considered as making
a Gaussian approximation, similar to the large sample the-
ory in maximum likelihood estimation. However, the fore-
cast and analysis background error covariances, Bf=a

k , take
on different interpretations depending on the DA scheme.

In full-scale geophysical models, the computation and
storage of the background error covariance Bf=a

k is rarely
feasible due to its large size; in practice, this is usually
treated abstractly in its action as an operator by precondi-
tioning the optimisation (Tabeart et al., 2018). One trad-
itional approach to handle this reduced representation is to
use a static-in-time background for the cost function in Eq.

(3.39), rendering the three-dimensional, variational (3D-
VAR) cost function

J 3D�VARðxÞ :¼
1

2
∥xfk � x∥2B3D�VAR

þ 1

2
∥yk �HkðxÞ∥2Rk

:

ð3:44Þ

The 3D-VAR background error covariance is typically
defined as a posterior, ‘climatological’ covariance, taken
with respect to a long-time average over the modelled
state. One way that this is roughly estimated in meteorology
is by averaging over a reanalysis data set, which is equivalent
to averaging with respect to a joint-smoothing posterior
over a long history for the system (Kalnay, 2003, and refer-
ences therein). If one assumes that the DA cycle represents
a stationary, ergodic process in its posterior statistics, and
that this admits an invariant, ergodic measure, π*, one
would define the 3D-VAR background error covariance
matrix with the expected value with respect to this measure
as

x� :¼ Eπ� ½x�; ð3:45aÞ

B3D�VAR :¼ Eπ� ðx� x�Þðx� x�Þ>
h i

: ð3:45bÞ

The 3D-VAR cycle is defined where xak is the minimising
argument (argmin) of Eq. (3.44) and subsequently
xfkþ1 :¼Mkþ1ðxakÞ, meaning, the forecast mean is estimated
with the background control trajectory propagated through
the fully non-linear model. Therefore, at every iteration of
the algorithm, 3D-VAR can be understood to treat the
proposal xfk as a random draw from the invariant, climato-
logical-posterior measure of the system; the optimised solu-
tion xak is thus the state that interpolates the forecast mean
and the currently observed data as if the forecast mean was
drawn randomly from the climatological-posterior.

For illustration, consider a cost-effective, explicit formu-
lation of 3D-VAR where the background error covariance
matrix is represented as a Cholesky factorisation. Here, one
performs the optimisation by writing the modelled state as
a perturbation of the forecast mean,

xk :¼ xfk þ Σw; ð3:46Þ

where B3D�VAR :¼ ΣΣT. The weight vector w gives the linear
combination of the columns of the matrix factor that
describe xk as a perturbation. One can iteratively optimise
the 3D-VAR cost function as such with a locally quadratic
approximation. Let x ik be the i-th iterate for the proposal
value at time tk, defining x0k :¼ xfk. The i + 1-st iteration is
defined (up to a subtlety pointed out by Ménétrier and
Auligné (2015)) as

x iþ1k ¼ xik þ Σwiþ1; ð3:47Þ

where wiþ1 is the argmin of the following incremental cost
function
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J 3D�VARIðwÞ :¼
1

2
∥w∥2 þ 1

2
∥yk �HkðxikÞ �HkΣw∥

2
Rk
:

ð3:48Þ

This approximate cost function follows from truncating the
Taylor expansion

HkðxÞ ¼ HkðxikÞ þHkΣwþOð∥w∥2Þ ð3:49Þ

and the definition of the Mahalanobis distance. Notice that
wiþ1 is defined uniquely as Eq. (3.48) is quadratic with
respect to the weights, allowing one to use fast and adequate
methods such as the conjugate gradient (Nocedal and
Wright, 2006, chapter 5). The iterations are set to termin-
ate when ∥wi∥ is sufficiently small, representing
a negligible change from the last proposal. This
approach to non-linear optimisation is known as the
incremental approach, and corresponds mathematically
to the Gauss-Newton optimisation method, an efficient
simplification of Newton’s descent method for non-linear
least-squares (Nocedal and Wright, 2006, chapter 10).
As described, it consists of an iterative linearisation of
the non-linear optimisation problem, which is a concept
utilised throughout this chapter.

The 3D-VAR approach described here played an
important role in early DA methodology, and aspects
of this technique are still widely used in ensemble-based
DA when using the regularisation technique known as
covariance hybridisation (Hamill and Snyder, 2000;
Lorenc, 2003; Penny, 2017). However, optimising the
state with the climatological-posterior background neg-
lects important information in the time-dependent fea-
tures of the forecast spread, described sometimes as the
‘errors of the day’ (Corazza et al., 2003). The extended
Kalman filter (EKF) can be interpreted to generalise the
3D-VAR cost function by including a time-dependent
background, like the KF, by approximating its time-
evolution at first order with the tangent linear model
as follows.

Suppose that the equations of motion are generated
by a non-linear function, independent of time for
simplicity,

d

dt
x :¼ f ðxÞ; xk ¼Mkðxk�1Þ :¼

ðtk
tk�1

f ðxÞ dtþ xk�1: ð3:50Þ

One can extend the linear-Gaussian approximation for the
forecast pdf by modelling the state as a perturbation of the
analysis mean,

xk�1 :¼ xak�1 þ δk�1 ∼Nðxak�1;Ba
k�1Þ; ð3:51aÞ

⇔   δk�1 ∼Nð0;Ba
k�1Þ: ð3:51bÞ

The evolution of the perturbation δk�1 is written via
Taylor’s theorem as

d

dt
δk�1 :¼

d

dt
ðxk�1 � xak�1Þ ð3:52aÞ

¼ f ðxk�1Þ � f ðxak�1Þ ð3:52bÞ

¼ rx f ðxak�1Þδk�1 þOð∥δk�1∥2Þ; ð3:52cÞ

whererx f ðxak�1Þ is the Jacobian equation with dependence
on the underlying analysis mean state. The linear evolution
defined by the truncated Taylor expansion about the under-
lying reference solution x,

d

dt
δ :¼ rx f ðxÞ � δ; ð3:53Þ

is known as the tangent linear model.
Making the approximation of the tangent linear model

for the first order evolution of the modelled state, we obtain

d

dt
x ≈ f ðxÞ þ rx f ðxÞ � δ ð3:54aÞ

)
ðtk
tk�1

d

dt
x dt ≈

ðtk
tk�1

f ðxÞ dtþ
ðtk
tk�1

rx f ðxÞ � δ dt ð3:54bÞ

) xk ≈ Mkðxk�1Þ þMkδk�1; ð3:54cÞ

whereMk is the resolvent of the tangent linear model. Given
that Gaussians are closed under affine transformations, the
EKF approximation for the (perfect) evolution of the state
vector is defined as

pðxkjyk�1:1Þ ≈ n
�
xkjMkðxak�1Þ;MkB

a
k�1M

>
k

�
: ð3:55Þ

Respectively, define the EKF analysis cost function as

J EKFðxÞ :¼
1

2
∥xfk � x∥2Bf

k
þ 1

2
∥yk �HkðxÞ∥2Rk

; ð3:56Þ

where

xfk :¼Mkðxak�1Þ; ð3:57aÞ

Bf
k :¼MkB

a
k�1M

>
k : ð3:57bÞ

A similar, locally quadratic, weight–space optimisation, can
be performed versus the non-linear observation operator
using a matrix decomposition for the time-varying back-
ground forecast error covariance, defining the state as
a perturbation using this matrix factor similar to Eq.
(3.46). This gives the square root EKF, which was used
historically to improve the stability over the direct approach
(Tippett et al., 2003).

The accuracy and stability of this EKF depends strongly
on the length of the forecast horizon Δt (Miller et al., 1994).
For short-range forecasting, the perturbation dynamics of
the tangent linear model can be an adequate approximation,
and is an underlying approximation for most operational
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DA (Carrassi et al., 2018). However, the explicit linear
approximation can degrade quickly, and especially when
the mean state is not accurately known. The perturbation
dynamics in the linearisation about the approximate mean
can differ substantially from the non-linear dynamics of the
true system as the approximate mean state diverges from the
modelled system (Grewal and Andrews, 2014, see chapters 7
and 8). These stability issues, and the computational cost of
explicitly representing the evolution of the background
covariance in the tangent linear model, limit the use of the
EKF for geophysical DA. Nonetheless, this technique pro-
vides important intuition that is developed later in this
chapter.

3.3.3 The Gaussian 4-D Cost Function
Consider again the perfect, linear-Gaussian model repre-
sented by Eq. (3.25). Using the Markov assumption, Eq.
(3.10), and the independence of observation errors, Eq.
(3.17), recursively for the hidden Markov model, the joint
posterior decomposes as

pðxL:0jyL:1Þ∝ pðx0Þ|fflffl{zfflffl}
ðiÞ

∏
L

k¼1
pðxkjxk�1Þ

" #
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðiiÞ

∏
L

k¼1
pðykjxkÞ

" #
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

ðiiiÞ

;

ð3:58Þ

where (i) is the prior for the initial state x0; (ii) is the free-
forecast with the perfect model Mk, depending on some
outcome drawn from the prior; and (iii) is the joint likeli-
hood of the observations in the DAW, given the back-
ground forecast.

Define the composition of the linear model forecast from
time tk�1 to tl as

Ml:k :¼Ml . . .Mk; Mk:k :¼ INx : ð3:59Þ

Using the perfect, linear model hypothesis, note that

xk :¼Mk:1x0 ð3:60Þ

for every k. Therefore, the transition pdfs in Eq. (3.58) are
reduced to a trivial condition by re-writing

pðxL:0jyL:1Þ∝ pðx0Þ ∏
L

k¼1
pðxkjMk�1:1x0Þ

" #
∏
L

k¼1
pðykjxkÞ

" #
ð3:61aÞ

∝ pðx0Þ ∏
L

k¼1
pðykjMk:1x0Þ

" #
; ð3:61bÞ

as this pdf evaluates to zero whenever xk ≠ Mk:1x0. Given
a Gaussian prior, and Gaussian observation error distribu-
tions, the minus-log-posterior four-dimensional (4-D) cost
function is derived as

J4Dðx0Þ :¼
1

2
∥x0 � x0∥

2
B0
þ 1

2

XL
k¼1

∥yk �HkMk:1x0∥
2
Rk
:

ð3:62Þ

Notice that the 4-D cost function in Eq. (3.62) is actually
quadratic with respect to the initial condition x0.
Therefore, the smoothing problem in the perfect, linear-
Gaussian model has a unique, optimal initial condition
that minimises the sum-of-square deviations from the
prior mean, with distance weighted with respect to the
prior covariance, and the observations, with distance
weighted with respect to the observation error covariances.
The optimal, smoothed initial condition using observation
information up to time tL is denoted xs0jL; this gives the
smoothed model states at subsequent times by the perfect
model evolution,

xskjL :¼Mk:1x
s
0jL: ð3:63Þ

This derivation is formulated for a smoothing problem
with a static-in-time DAW, in which an entire time series
of observations yL:1 is available, and for which the esti-
mation may be performed ‘offline’. However, a simple
extension of this analysis accommodates DAWs that are
sequentially shifted in time, allowing an ‘online’ smooth-
ing estimate to be formed analogously to sequential
filtering.

Fixed-lag smoothing sets the length of the DAW, L, to be
fixed for all time, while the underlying states are cycled
through this window as it shifts forward in time. Given the
lag of length L, suppose that a shift S is defined for which
1≤S≤L. It is convenient to consider an algorithmically
stationary DAW, referring to the time indices ft1; . . . ;tLg.
In a given cycle, the joint posterior pðxL:1jyL:1Þ is estimated.
After the estimate is produced, the DAW is subsequently
shifted in time by S � Δt and all states are re-indexed by
tk tkþS to begin the next cycle. For a lag of L and a shift of
S, the observation vectors at times ftL�Sþ1; . . . ;tLg corres-
pond to observations newly entering the DAW for the ana-
lysis performed up to time tL. When S ¼ L, the DAWs are
disconnected and adjacent in time, whereas for S < L there
is an overlap between the estimated states in sequential
DAWs. Figure 3.2 provides a schematic of how the DAW
is shifted for a lag of L ¼ 5 and shift S ¼ 2. Following the
common convention in DA that there is no observation at
time zero, in addition to theDAW, ft1; . . . ; tLg, states at time
t0 may be estimated or utilised in order to connect estimates
between adjacent/overlapping DAWs.

Consider the algorithmically stationary DAW, and sup-
pose that the current analysis time is tL, where the joint
posterior pdf pðxL�S:1�SjyL�S:1�SÞ is available from the last
fixed-lag smoothing cycle at analysis time tL�S. Using the
independence of observation errors and the Markov
assumption recursively,
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pðxL:1 jyL:1�SÞ ∝ð
dx0  pðx0jyL�S:1�SÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðiÞ

∏
L

k¼1
pðxkjxk�1Þ

" #
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðiiÞ

∏
L

k¼L�Sþ1
pðykjxkÞ

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðiiiÞ

;

ð3:64Þ

where: (i) now represents averaging out the initial condition
at time t0 with respect to the marginal smoothing pdf for
xs0jL�S over the last DAW; (ii) represents the free forecast of
the smoothed estimate for xs0jL�S; and term (iii) represents
the joint likelihood of the newly incoming observations to
the DAW given the forecasted model state. Noting that
pðxL:1jyL:1Þ ∝ pðxL:1jyL:1�SÞ, this provides a recursive form
of the 4-D cost function, shifted sequentially in time,

J 4D�seqðx0Þ :¼
1

2
∥xs0jL�S � x0∥

2
Bs
0jL�S

þ 1

2

XL
k¼L�Sþ1

∥yk �HkMk:1x0∥
2
Rk
; ð3:65Þ

where Bs
0jL�S refers to the smoothed error covariance from

the last DA cycle. As with the KF cost function, the poster-
ior error covariance, conditioning on observations up to
time tL, is identified with

Bs
0jL :¼ Ξ�1J 4D�seq

: ð3:66Þ

Given the perfect, linear-Gaussian model assumption, the
mean and covariance are propagated to time tS via

xsSjL :¼MS:1x
s
0jL; ð3:67aÞ

Bs
SjL :¼MS:1B

s
0jLM

T
S:1; ð3:67bÞ

and states are re-indexed as tkþS tk to initialise the next cycle.
This provides a 4-D derivation of the Kalman smoother (KS),
assuming a perfect model, though not all developments take
this approach, using a global analysis over all observations
in the current DAW at once. Other formulations use an alter-
nating (i) forward sequentialfiltering pass to update the current

forecast; and (ii) backward-in-time sequential filtering pass
over the DAW to condition lagged states on the new informa-
tion. Examples of smoothers that follow this alternating ana-
lysis include the ensemble Kalman smoother (EnKS) (Evensen
and Leeuwen, 2000) and the ensemble Rauch–Tung–Striebel
(RTS) smoother (Raanes, 2016), with the EnKS to be dis-
cussed in Section 3.4.3.

3.3.4 Incremental 4D-VAR
The method of incremental four-dimensional, variational
(4D-VAR) data assimilation (Le Dimet and Talagrand,
1986; Talagrand and Courtier, 1987; Courtier et al., 1994)
is a classical and widely used DA technique that extends the
linear-Gaussian 4-D analysis to non-linear settings, both for
fixed and sequential DAWs. Modern formulations of the
4D-VAR analysis furthermore handle model errors, as in
weak-constraint 4D-VAR (Trémolet, 2006; Desroziers
et al., 2014; Laloyaux et al., 2020), and may include time-
varying background error covariances by combining an
ensemble of 4D-VAR (Bonavita et al., 2012), which is
known as ensemble of data assimilation (EDA).

Assuming now that the state and observation models are
non-linear, as in Eq. (3.7), denote the composition of the
non-linear model forecast from time tk−1 to time tl as

M l:k :¼M l ∘ . . . ∘Mk ; Mk:k :¼ INx : ð3:68Þ

Then, the linear-Gaussian 4-D cost function is formally
extended as a Gaussian approximation in 4D-VAR with

J 4D�VARðx0Þ :¼
1

2
∥x0 � x0∥

2
B4D�VAR

þ 1

2

XL
k¼1

∥yk �Hk ∘ Mk:1ðx0Þ∥2Rk
; ð3:69Þ

whereB4D�VAR B3D�VAR. A similar indexing to equation to
Eq. (3.65) gives the sequential form over newly incoming
observations.

The incremental linearisation that was performed in 3D-
VAR in Eq. (3.48) forms the basis for the classical technique

tL−3 tL−2

yL−3 yL−2

tL−1 tL

yL−1 yL

tL+1 tL+2

yL+1 yL+2

tL−2

tL

tL+2

S�t

S�t

L�t

Figure 3.2 Three cycles of a shift S = 2, lag L = 5 fixed-lag smoother, cycle number is increasing top to bottom. Time indices on the left-
hand margin indicate the current time for the associated cycle of the algorithm. New observations entering the current DAW are shaded
black. Source: Grudzien and Bocquet (2021), adapted from Asch et al. (2016).
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of incremental 4D-VAR. Suppose again that an explicit
Cholesky factor for the background covariance is given
B4D�VAR :¼ ΣΣ>, where the state is written as
a perturbation of the i-th iterate as

x0 :¼ xi0 þ Σw: ð3:70Þ

Taking a Taylor expansion of the composition of the non-
linear observation model and the non-linear state model at
the i-th iterate,

Hk ∘ Mk:1ðx0Þ ¼ H ∘ Mk:1ðxi0Þ þHkMk:1ΣwþOð∥w∥2Þ;
ð3:71Þ

the incremental cost function is rendered

J 4D�VARIðwÞ ¼
1

2
∥w∥2 þ 1

2

XL
k¼1

∥yk �Hk ∘ Mk:1ðxi0Þ

�HkMk:1Σw∥
2
Rk
: ð3:72Þ

The argmin of Eq. (3.72) is defined as wi, where x iþ1 is
defined as in Eq. (3.47).

It is important to remember that in Eq. (3.72), the term
Mk:1 involves the calculation of the tangent linear model
with reference to the underlying non-linear solution
ML:1ðxi0Þ; simulated freely over the entire DAW. A key
aspect to the efficiency of the incremental 4D-VAR
approach is in the adjoint model computation of the gradi-
ent to this cost function, commonly known as backpropaga-
tion in statistical and machine learning (Rojas, 2013, see
chapter 7). The adjoint model with respect to the proposal
is defined as

d

dt
eδ ¼ �rx f ðxiÞ

�>eδ: ð3:73Þ

The solution to the linear adjoint model then defines the
adjoint resolvent matrix M>k (i.e. the transpose of the tan-
gent linear resolvent). Notice that for the composition of the
tangent linear model forecasts with k≤ l, the adjoint is given
as

M>l:k :¼ ðMlMl�1 . . .Mkþ1MkÞ> ¼M>k M
>
kþ1 . . .M

>
l�1M

>
l :

ð3:74Þ

This means that the adjoint model variables eδl are
propagated by the linear resolvents of the adjoint
model, but applied in reverse chronological order
from the tangent linear model from last time tl to the
initial time tk�1,eδk�1 :¼M>l:keδl ð3:75Þ

transmitting the sensitivity from a future time back to
a perturbation of (Kalnay, 2003, see section 6.3).

Define the innovation vector of the i-th iterate and the k-th
observation vector as

δ
i
k :¼ yk �Hk ∘ Mk:1ðxi0Þ: ð3:76Þ

Then the gradient of Eq. (3.72) with respect to the weight
vector is written

rwJ 4D�VARI ¼ w�
XL
k¼1

Σ>M>k:1H
>
k R
�1
k δ

i
k �HkMk:1Σw

h i
:

ð3:77Þ

Making the substitution

Δk :¼ R�1k δ
i
k �HkMk:1Σw

h i
; ð3:78Þ

notice that the gradient is written in Horner factorisation as

rwJ 4D�VARI ¼ w� Σ>M>1 ½H>1 Δ1 þM>2 ½H>2 Δ2 þ . . .

þ ½M>LH>LΔL���: ð3:79Þ

Defining the adjoint variable as eδL :¼ H>LΔL, with recursion
in tk,eδk :¼ H>k Δk þM>kþ1 eδkþ1; ð3:80Þ

the gradient of the cost function is written as

rwJ 4D�VARI :¼ w� Σ eδ0: ð3:81Þ

Using these definitions, the gradient of the incremental cost
function is computed from the following steps: (i) a forward
pass of the free evolution of xi0 under the non-linear forecast
model, computing the innovations as in Eq. (3.76); (ii) the
propagation of the perturbation Σw in the tangent linear
model and the linearised observation operator with respect
to the proposal, xik, in order to compute the terms in Eq.
(3.78); and (iii) the back propagation of the sensitivities in
the adjoint model, Eq. (3.73), to obtain the adjoint variables
recursively as in Eq. (3.80) and the gradient from Eq. (3.81).

The benefit of this approach is that it gives an extremely
efficient calculation of the gradient, provided that the tan-
gent linear and adjoint models are available, which, in turn,
is key to very efficient numerical optimisations of cost func-
tions. However, the trade-off is that the tangent linear and
adjoint models of a full-scale geophysical state model, and
of the observationmodel, require considerable development
time and expertise. Increasingly, these models can be com-
puted abstractly by differentiating a computer program
alone, in what is known as automatic differentiation of
code (Griewank, 1989; Griewank and Walther, 2003;
Hascöet, 2014; Baydin et al., 2018). When tangent linear
and adjoint models are not available, one alternative is to
use ensemble sampling techniques in the fully non-linear
model M alone. The ensemble-based analysis provides
a complementary approach to the explicit tangent linear
and adjoint model analysis – this approach can be developed
independently, or hybridised with the use of the tangent
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linear and adjoint models as in various flavours of hybrid
ensemble-variational (EnVAR) techniques (Asch et al., 2016;
Bannister, 2017). This chapter focuses on the independent
development of EnVAR estimators in the following section.

3.4 Bayesian Ensemble-Variational Estimators

3.4.1 The Ensemble Transform Kalman Filter
Consider once again the perfect, linear-Gaussian model in
Eq. (3.25). Rather than explicitly computing the evolution
of the background mean and error covariance in the linear
model as in Eq. (3.32) and the KF, one can alternatively
estimate the state mean and the error covariances using

a statistical sampling approach. Let xf=ak;i

n oNe

i¼1
be replicates

of the model state, independently and identically distributed
(iid) according to the distribution

xf=ak;i ∼Nðx
f=a
k ;Bf=a

k Þ: ð3:82Þ

Given the iid assumption, the ensemble-based mean and the
ensemble-based covariance

x̂f=ak :¼ 1

Ne

XNe

i¼1
xf=ak;i ; ð3:83aÞ

Pf=a
k :¼ 1

Ne � 1

XNe

i¼1
xf=ak;i � x̂f=ak

� �
xf=ak;i � x̂f=ak

� �T
; ð3:83bÞ

are (asymptotically) consistent estimators of the back-
ground, that is,

E x̂f=ak

h i
¼ xf=ak ; lim

Ne!∞
E Pf=a

k

h i
¼ Bf=a

k ; ð3:84Þ

where the expectation is over the possible realisations of the
random sample. Particularly, the multivariate central limit
theorem gives that

Pf=a
k

� ��1
2

xf=ak � x̂f=ak

� �
! dNð0; INxÞ; ð3:85Þ

referring to convergence in distribution as Ne!∞ (Härdle
et al., 2017, see section 6.2).

Using the relationships in Eq. (3.83), these estimators are
efficiently encoded as linear operations on the ensemble
matrix. Define the ensemble matrix and the perturbation
matrix as

Ef=a
k :¼ xf=ak;1 . . . xf=ak;Ne

� �
2ℝNx�Ne ; ð3:86Þ

Xf=a
k :¼ xf=ak;1 � x̂f=ak . . . xf=ak;Ne

� x̂f=ak

� �
2ℝNx�Ne ; ð3:87Þ

that is, as the arrays with the columns given as the ordered
replicates of the model state and their deviations from the
ensemble mean respectively. For 1, defined as the vector

composed entirely of ones, define the following linear oper-
ations conformally in their dimensions

x̂f=ak ¼ Ef=a
k 1=Ne; ð3:88aÞ

Xf=a
k ¼ Ef=a

k ðINe � 11T=NeÞ; ð3:88bÞ

Pf=a
k ¼

	
Xf=a

k


	
Xf=a

k


T
=
	
Ne � 1



: ð3:88cÞ

The operator INe � 11T=Ne is the orthogonal complemen-
tary projection operator to the span of the vector of ones,
known as the centring operator in statistics (Härdle et al.,
2017, see section 6.1); this has the effect of transforming the
ensemble to mean zero.

Notice, when Ne ≤Nx, the ensemble-based error covari-
ance has rank of at mostNe � 1, irrespective of the rank of
the background error covariance, corresponding to the
one degree of freedom lost in computing the ensemble
mean. Therefore, to utilise the ensemble error covari-
ance in the least-squares optimisation as with the KF in
Eq. (3.39), a new construction is necessary. For
a generic matrix A2ℝN�M with full column rank M,
define the (left Moore–Penrose) pseudo-inverse (Meyer,
2000, see page 423)

A† :¼ ðA>AÞ�1A>: ð3:89Þ

In particular, A†A ¼ IM (and the orthogonal projector into
the column span of A) is defined by AA†. When A has full
column rank as here, define theMahalanobis ‘distance’with
respect to G ¼ AA> as

∥υ∥G :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA†υÞ>ðA†υÞ

q
: ð3:90Þ

Note that in the case thatG does not have full column rank
(i.e. N > M), this is not a true norm on ℝN as it is degener-
ate in the null space of A†. This instead represents a lift of
a non-degenerate norm in the column span of A to RN . In
the case that υ is in the column span of A, one can equiva-
lently write

υ ¼ Aw; ð3:91aÞ

∥υ∥G ¼ ∥w∥; ð3:91bÞ

for a vector of weights w2RM .
The ensemble Kalman filter (EnKF) cost function for the

linear-Gaussian model is defined

J EnKFðxkÞ :¼
1

2
∥x̂fk � xk∥

2
Pf
k
þ 1

2
∥yk �Hkxk∥

2
Rk

ð3:92aÞ

⇔  J EnKFðwÞ :¼
1

2
ðNe�1Þ∥w∥2 þ 1

2
∥yk�Hk x̂

f
k �HkX

f
kw∥

2
Rk
;

ð3:92bÞ

where the model state is written as a perturbation of the
ensemble mean
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xk ¼ x̂fk þ Xf
kw: ð3:93Þ

Notice,w2ℝNe , giving the linear combination of the ensem-
ble perturbations used to represent the model state.

Define ŵ to be the argmin of the cost function in Eq.
(3.92b). Hunt et al. (2007) and Bocquet (2011) demonstrate
that, up to a gauge transformation, ŵ yields the argmin of
the state-space cost function, Eq. (3.92a), when the estimate
is restricted to the ensemble span. Equation (3.92b) is quad-
ratic in w and can be solved to render

ŵ :¼ 0� Ξ�1J EnKF
rwJ EnKFjw¼0; ð3:94aÞ

T :¼ Ξ
�1

2
J EnKF

; ð3:94bÞ

Pa
k ¼ ðXf

kTÞðXf
kTÞ

>=ðNe � 1Þ; ð3:94cÞ

corresponding to a single iteration of Newton’s descent
algorithm in Eq. (3.94a), initialised with the ensemble
mean, to find the optimal weights.

The linear ensemble transform Kalman filter (ETKF)
equations (Bishop et al., 2001; Hunt et al., 2007) are then
given by

Ef
k ¼MkE

a
k�1; ð3:95aÞ

Ea
k ¼ x̂fk1

> þ Xf
k ŵ1> þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ne � 1

p
TU

� �
; ð3:95bÞ

where U2ℝNe�Ne can be any mean-preserving, orthogonal
transformation (i.e. U1 ¼ 1). The simple choice of U :¼ INe

is sufficient, but it has been demonstrated that choosing
a random, mean-preserving orthogonal transformation at
each analysis can improve the accuracy and robustness of
the ETKF, smoothing out higher-order artefacts in the
empirical covariance estimate (Sakov and Oke, 2008).

Notice that Eq. (3.95b) is written equivalently as a single
right ensemble transformation:

Ea
k ¼ Ef

kΨk; ð3:96aÞ

Ψk :¼ 11>=Ne þ ðINe � 11>=NeÞ ŵ1> þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ne � 1

p
TU

� �
;

ð3:96bÞ

where the columns are approximately distributed as in Eq.
(3.82), with the (asymptotic) consistency as with the central
limit theorem, Eq. (3.85). However, in the small feasible
sample sizes for realistic geophysical models, this approxi-
mation can lead to a systematic underestimation of the
uncertainty of the analysis state, where the ensemble-based
error covariance can become overly confident in its own
estimate with artificially small variances. Covariance infla-
tion is a technique that is widely used to regularise the
ensemble-based error covariance by increasing the empirical
variances of the estimate. This can be used to handle the
inaccuracy of the estimator due to the finite sample size

approximation of the background mean and error covari-
ance as in Eq. (3.85), as well as inaccuracies due to a variety
of other sources of error (Carrassi et al., 2018; Raanes et al.,
2019a; Tandeo et al., 2020).

A Bayesian hierarchical approach can model the
inaccuracy in the approximation error due to the finite
sample size by including a prior additionally on the
background mean and error covariance pðxfk;Bf

kÞ, as in
the finite-size ensemble Kalman filter formalism of
Bocquet (2011), Bocquet and Sakov (2012), and
Bocquet et al. (2015). Mathematical results demonstrate
that covariance inflation can ameliorate the systematic
underestimation of the variances due to model error in
the presence of a low-rank ensemble (Grudzien et al.,
2018). In the presence of significant model error, the
finite-size analysis is extended by the variant developed
by Raanes et al. (2019a).

The linear transform of the ensemble matrix in Eq.
(3.96) is key to the efficiency of the (deterministic) EnKF
presented in this section (Sect. 3.4.1). The ensemble-
based cost function Hessian ΞJ EnKF 2ℝNe�Ne , where
Ne ≪ Nx for typical geophysical models. Particularly, the
cost of computing the optimal weights, as in Eq. (3.94a), and
computing the transform matrix T in Eq. (3.94b) are both
subordinate to the cost of the eigenvalue decomposition of
the Hessian at OðN3

e Þ floating point operations (flops), or to
a randomised singular value decomposition (Farchi and
Bocquet, 2019). However, the extremely low ensemble size
means that the correction to the forecast is restricted to the low-
dimensional ensemble span, which may fail to correct direc-
tions of rapidly growing errors due to the rank deficiency.
While chaotic, dissipative dynamics implies that the back-
ground covariance Bf=a

k has spectrum concentrated on
a reduced rank subspace (Carrassi et al., 2022, and referenced
therein), covariance hybridisation (Penny, 2017) or localisa-
tion (Sakov and Bertino, 2011) are used in practice to regular-
ise the estimator’s extreme rank deficiency, and the spurious
empirical correlations that occur as a result of the degenerate
sample size.

When extended to non-linear dynamics, as in Eq. (3.7a),
the EnKF can be seen to make an ensemble-based approxi-
mation to the EKF cost function, where the forecast ensem-
ble is defined by

xfk;i :¼Mk�1ðxak�1;iÞ; Ef
k :¼ ð xfk;1 . . . xfk;Ne

Þ: ð3:97Þ

The accuracy of the linear-Gaussian approximation to
the dynamics of the non-linear evolution of the ensem-
ble, like the approximation of the EKF, depends
strongly on the length of the forecast horizon Δt. When
the ensemble mean is a sufficiently accurate approxima-
tion of the mean state, and if the ensemble spread is of
the same order as the error in the mean estimate
(Whitaker and Loughe, 1998), a similar approximation
can be made for the ensemble evolution at first order, as
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with Eq. (3.53), but linearised about the ensemble mean
as discussed later in Eq. (3.112). Despite the similarity to
the EKF, in the moderately non-linear dynamics present
in medium- to longer-range forecast horizons, the EnKF
does not suffer from the same inaccuracy as the EKF in
truncating the time-evolution at first order (Evensen,
2003). The forecast ensemble members themselves evolve
fully non-linearly, tracking the higher-order dynamics,
but the analysis update based on the Gaussian approxi-
mation becomes increasingly biased and fails to discrim-
inate features like multimodality of the posterior, even
though this is occasionally an asset with higher-order
statistical artefacts (see the discussion in Lawson and
Hansen, 2004).

3.4.2 The Maximum Likelihood Ensemble Filter
The EnKF filter analysis automatically accommodates
weak non-linearity in the state model without using the
tangent linear model, as the filtering cost function has no
underlying dependence on the state model. However, the
EnKF analysis must be adjusted to account for non-
linearity in the observationmodel.When a non-linear obser-
vation operator is introduced, as in Eq. (3.7b), the EnKF
cost function can be re-written in the incremental analysis as

J EnKFIðwÞ :¼
1

2
ðNe � 1Þ∥w∥2 þ 1

2
∥yk �Hk x̂i;fk

� �
�HkX

f
kw∥

2
Rk
; ð3:98Þ

where x̂i;fk refers to the i-th iteration for the forecast mean.
Note that this does not refer to an estimate derived by an
iterated ensemble forecast through the non-linear state
model – rather, this is an iteration only with respect to the
estimate of the optimal weights for the forecast perturbations.
If ŵi is defined as the argmin of the cost function in Eq. (3.98),
then the iterations of the ensemble mean are given as

x̂iþ1;fk :¼ x̂i;fk þ Xf
kŵ

i: ð3:99Þ

When ∥ŵi∥ is sufficiently small, the optimisation terminates
and the transform and the ensemble update can be performed
as with the ETKF as in Eqs. (3.94b) and (3.96). However, the
direct, incremental approach here used the computation of
the Jacobian of the observation operator Hk.

The maximum likelihood ensemble filter (MLEF) of
Zupanski (2005) and Zupanski et al. (2008) is an estimator
designed to perform incremental analysis in the ETKF for-
malism, but without taking an explicit Taylor expansion for
the observation operator. The method is designed to
approximate the directional derivative of the non-linear
observation operator with respect to the ensemble
perturbations,

HkX
f
k :¼ rjx̂ i;f

k
½Hk�Xf

k; ð3:100Þ

equivalent to computing the ensemble sensitivities of the
map linearised about the ensemble-based mean. This is
often performed with an explicit finite differences approxi-
mation between the ensemble members and the ensemble
mean, mapped to the observation space. Particularly, one
may write

Hk xi;fk

� �
≈ ŷik :¼ Hk x̂i;fk 1> þ ϵXf

k

� �
1=Ne; ð3:101aÞ

HkX
f
k ≈ eYk :¼

1

ϵ
Hk x̂ i;fk 1> þ ϵXf

k

� �
ðINe � 11>=NeÞ;

ð3:101bÞ

where ϵ is a small constant that re-scales the ensemble per-
turbations to approximate infinitesimals about the mean, and
rescales the finite differences about the ensemble mean in the
observation space. This technique is used, for example, in
a modern form of theMLEF algorithm, based on the analysis
of the iterative ensemble Kalman filter and smoother (Asch
et al., 2016, see section 6.7.2.1). The approximation in Asch
et al. (2016) easily generalises to a 4-D analysis, taking the
directional derivative with respect to the state and observation
models simultaneously, as in Eq. (3.111). However, in the
smoothing problem, one can also extend the analysis in terms
of an alternating forward-filtering pass and backward-filtering
pass to estimate the joint posterior. This chapter returns to the
4-D analysis with the iterative ensemble Kalman filter and
smoother in Section 3.4.4, after an interlude on the retrospect-
ive analysis of the EnKS in the following section.

3.4.3 The Ensemble Transform Kalman Smoother
The EnKS extends the filter analysis in the ETKF over
the smoothing DAW by sequentially reanalysing past
states with future observations with an additional filter-
ing pass over the DAW backward-in-time. This analysis
is performed retrospectively in the sense that the filter
cycle of the ETKF is left unchanged, while an additional
inner-loop of the DA cycle performs an update on the
estimated lagged state ensembles within the DAW,
stored in memory. This can be formulated both for
a fixed DAW and for fixed-lag smoothing, where only
minor modifications are needed. Consider here the algo-
rithmically stationary DAW ft1; . . . ; tLg of fixed-lag
smoothing, with a shift S and lag L, and where it is assumed
that S ¼ 1≤L. The fixed-lag smoothing cycle of the EnKS
begins by estimating the joint posterior pdf pðxL:1jyL:1Þ
recursively, given the joint posterior estimate over the last
DAW pðxL�1:0jyL�1:0Þ.

Given pðxL�1:0; yL�1:0Þ, one can write the filtering pdf up
to proportionality:

pðxLjyL:0Þ ∝ pðyLjxL; yL � 1:0Þ pðxL; yL�1:0Þ ð3:102aÞ
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∝ pðyLjxLÞ|fflfflfflfflffl{zfflfflfflfflffl}
ðiÞ

ð
pðxLjxL�1ÞpðxL�1:0jyL�1:0ÞdxL�1:0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðiiÞ

; ð3:102bÞ

as the product of (i) the likelihood of the observation yL
given xL ; and (ii) the forecast for xL using the transition pdf
on the last joint posterior estimate, marginalising out the
past history of the model state xL�1:0. Recalling that
pðxLjyL:1Þ ∝ pðxLjyL:0Þ, this provides a means to estimate
the filter marginal of the joint posterior. An alternating
filtering pass, backward-in-time, completes the smoothing
cycle by estimating the joint posterior pdf pðxL:1; yL:1Þ.

Consider that the marginal smoother pdf is proportional
to

pðxL�1jyL:0Þ ∝ pðyLjxL�1; yL�1:0ÞpðxL�1; yL�1:0Þ ð3:103aÞ

∝ pðyLjxL�1Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
ðiÞ

pðxL�1jyL�1:0Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
ðiiÞ

; ð3:103bÞ

where (i) is the likelihood of the observation yL given the
past state xL�1, and (ii) is the marginal pdf for xL�1 from the
last joint posterior. The corresponding linear-Gaussian
Bayesian MAP cost function is given for the retrospective
analysis of the KS as

J KSðxL�1Þ ¼
1

2
∥xL�1 � xsL�1jL�1∥

2
Bs
L�1jL�1

þ 1

2
∥yL

�HLMLxL�1∥
2
RL
; ð3:104Þ

where xsL�1jL�1 and Bs
L�1jL�1 are the mean and covariance of

the marginal smoother pdf pðxL�1jyL�1:0Þ. Define the matrix
decomposition with the factorisation (e.g. a Cholesky
decomposition):

Bs
L�1jL�1 ¼ Ss

L�1jL�1ðS
s
L�1jL�1Þ

>; ð3:105Þ

and write xL�1 ¼ xsL�1jL�1 þ S
s
L�1jL�1w, rendering the cost

function as

J KSðwÞ ¼
1

2
∥w∥2 þ 1

2
∥yL �HLMLðxsL�1jL�1 þ S

s
L�1jL�1wÞ∥2RL

ð3:106aÞ

¼ 1

2
∥w∥2 þ 1

2
∥yL �HLx

f
L �HLSf

Lw∥
2
RL
: ð3:106bÞ

Let w now denote the argmin of Eq. (3.106). It is important
to recognise that

xL :¼ML xsL�1jL�1 þ S
s
L�1jL�1w

� �
ð3:107aÞ

¼ xfL þ S
f
Lw; ð3:107bÞ

such that the argmin for the smoothing problemw is also the
argmin for the filtering MAP analysis.

The ensemble-based approximation,

xL�1 ¼ x̂sL�1jL�1 þ Xs
L�1jL�1w; ð3:108aÞ

J EnKSðwÞ ¼
1

2
ðNe � 1Þ∥w∥2 þ 1

2
∥yL �HLx̂

f
L �HLX

f
Lw∥

2;

ð3:108bÞ

to the exact smoother cost function in Eq. (3.106), yields the
retrospective analysis of the EnKS as

ŵ :¼ 0� Ξ�1J EnKS
rJ EnKSjw¼0; ð3:109aÞ

T :¼ Ξ
�1

2
J EnKS

; ð3:109bÞ

Es
L�1jL ¼ x̂sL�1jL�11

> þ Xs
L�1jL�1

�
ŵ1> þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ne � 1
p

>U
�
;

¼ Es
L�1jL�1ΨL;

ð3:109cÞ

whereΨL is the ensemble transform as defined for the filter-
ing update as in Eq. (3.96).

These equations generalise for arbitrary indices kjL
over the DAW, providing the complete description of
the inner-loop between each filter cycle of the EnKS.
After each new observation is assimilated with the
ETKF analysis step, a smoother inner-loop makes
a backward pass over the DAW applying the transform
and the weights of the ETKF filter update to each past
ensemble state stored in memory. This analysis easily
generalises to the case where there is a shift of the
DAW with S > 1, though the EnKS alternating forward-
and backward-filtering passes must be performed in
sequence over the observations, ordered-in-time, rather
than making a global analysis over yL:L�Sþ1· Finally, this
easily extends to accommodate a non-linear observation
model by using the MLEF filtering step to obtain the opti-
mal ensemble transform, and by applying this recursively
backward-in-time to the lagged ensemble states.

A schematic of the EnKS cycle for a lag of L = 4 and
a shift of S = 1 is pictured in Fig. 3.3. Time moves
forward from left to right in the horizontal axis with
a step size of Δt. At each analysis time, the ensemble
forecast from the last filter pdf is combined with the
observation to produce the ensemble transform update.
This transform is then utilised to produce the posterior
estimate for all lagged ensemble states, conditioned on
the new observation. The information in the posterior
estimate thus flows in reverse time to the lagged states
stored in memory, but the information flow is unidirec-
tional in this scheme. This type of retrospective analysis
maintains the computational cost of the fixed-lag EnKS
described here at a comparable level to the EnKF, with
the only significant additional cost being the storage of
the ensemble at lagged times to be reanalysed.
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3.4.4 The Iterative Ensemble Kalman Filter and Smoother
While the EnKS is computationally efficient, its retrospect-
ive analysis has some drawbacks compared to the
4-D analysis in terms of forecast accuracy. The 4-D fixed-
lag smoothing analysis re-initialises each cycle with
a reanalysed estimate for the initial data, transmitting the
observations’ information forward-in-time through the
non-linear dynamics. The challenge with the 4-D analysis
in the absence of the tangent linear and adjoint models is in
devising how to efficiently and accurately compute the gra-
dient of the 4-D cost function. Building on Zupanski (2005)
and Liu et al. (2008), the analysis of the iterative ensemble
Kalman filter (IEnKF) and the iterative ensemble Kalman
smoother (IEnKS) extends the ensemble transform method
of the ETKF to iteratively optimise the 4-D cost function.

Recall the quadratic cost function at the basis of incre-
mental 4D-VAR, Eq. (3.72) – making an ensemble-based
approximation for the background mean and error covari-
ance, and writing the model state as an ensemble perturb-
ation of the i-th proposal for the ensemble mean, one has

J IEnKSðwÞ :¼
1

2
∥x̂i0 � x̂ i0 � X0w∥

2
P0

þ 1

2

XL
k¼1

∥yk �Hk ∘Mk:1 x̂i0
	 


�HkMk:1X0w∥
2
Rk

ð3:110aÞ
¼ 1

2
ðNe � 1Þ∥w∥2

þ 1

2

XL
k¼1

∥yk �Hk ∘Mk:1 x̂i0
	 


�HkMk:1X0w∥
2
Rk
:

ð3:110bÞ

Applying the finite differences approximation as given in
Eq. (3.101a,b), but with respect to the composition of the
non-linear observation operator with the non-linear state
model

Hk ∘Mk:1ðx̂ i0Þ ≈ ŷk :¼ Hk ∘Mk:1 x̂i0 þ X0ϵ
	 


1=Ne;

ð3:111aÞ

HkMk:1X0 ≈ eYk:¼
1

ϵ
Hk ∘Mk:1 x̂i0 þ X0ϵ

	 

INe � 11Τ=Ne
	 


;

ð3:111bÞ

this sketches the ‘bundle’ formulation of the IEnKS
(Bocquet and Sakov, 2013; Bocquet and Sakov, 2014).
This indexing refers to the case where the smoothing prob-
lem is performed offline, with a fixed DAW, though
a similar indexing to Eq. (3.65) gives the sequential form
over newly incoming observations.

The sequential form of the IEnKS can be treated as a non-
linear sequential filter, which is the purpose that the method
was originally devised for. Indeed, setting the number of
lagged states L = 1, this provides a direct extension of the
EnKF cost function, Eq. (3.92b), but where there is an
additional dependence on the initial conditions for the
ensemble forecast. This lag-1 iterative filtering scheme is
called the IEnKF (Bocquet and Sakov, 2012; Sakov et al.,
2012), which formed the original basis for the IEnKS.
Modern forms of the IEnKF/S analysis furthermore include
the treatment of model errors, like weak-constraint 4D-
VAR (Sakov and Bocquet, 2018; Sakov et al., 2018;
Fillion et al., 2020). Alternative formulations of this ana-
lysis, based on the original stochastic, perturbed observa-
tion EnKF (Evensen, 1994; Burgers et al., 1998), also have
a parallel development in the ensemble randomised max-
imum likelihood method (EnRML) of Gu and Oliver
(2007), Chen and Oliver (2012), and Raanes et al. (2019b).
A similar ensemble-variational estimator based on the
EnKF analysis is the ensemble Kalman inversion (EKI) of
Iglesias et al. (2013), Schillings and Stuart (2018), and
Kovachki and Stuart (2019).
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Figure 3.3 L ¼ 4 (lag), S ¼ 1
(shift) EnKS. Observations are
assimilated sequentially via the
filter cost function and
a retrospective reanalysis is
applied to all ensemble states
within the lag window stored in
memory. Source: Grudzien and
Bocquet (2021), adapted from
Asch et al. (2016).
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3.4.5 The Single-Iteration Ensemble Kalman Smoother
The sequential smoothing analysis so far has presented two
classical approaches: (i) a 4-D approach using the global
analysis of all new observations available within a DAW at
once, optimising an initial condition for the lagged model
state; and (ii) the 3-D approach based upon alternating for-
ward- and backward-filtering passes over the DAW. Each of
these approaches has strengths and weaknesses in a computa-
tional cost/forecast-accuracy trade-off. Particularly, the
4-D approach, as in the IEnKS, benefits from the improved
estimate of the initial condition when producing the subse-
quent forecast statistics in a shiftedDAW; however, each step
of the iterative optimisation comes at the cost of simulating
the ensemble forecast over the entire DAW in the fully non-
linear state model, which is typically the greatest numerical
expense in geophysical DA. On the other hand, the
3-D approach of the classical EnKS benefits from a low com-
putational cost, requiring only a single ensemble simulation of
the non-linear forecast model over the DAW, while the retro-
spective analysis of lagged states is performed with the filter-
ing transformwithout requiring additional model simulations
(though at a potentially large memory storage cost). It should
be noted that in the perfect, linear-Gaussian model Bayesian
analysis, both approaches produce equivalent estimates of the
joint posterior. However, when non-linearity is present in the
DA cycle, the approaches produce distinct estimates: for this
reason, the source of the non-linearity in the DA cycle is of an
important practical concern.

Consider the situation in which the forecast horizon Δt is
short, so that the ensemble time-evolution is weakly non-
linear, and where the ensemble mean is a good approxima-
tion for the mean of the filtered distribution. In this case, the
model forecast dynamics are well-approximated by the tan-
gent linear evolution of a perturbation about the ensemble
mean, that is,

xk ¼Mkðxk�1Þ ≈Mkðx̂k�1Þ þMkδk�1: ð3:112Þ

For such short-range forecasts, non-linearity in the obser-
vation-analysis-forecast cycle may instead be dominated by
the non-linearity in the observation operator Hk, or in the
optimisation of hyper-parameters of the filtering cost func-
tion, and not by the model forecast itself. In this situation,
an iterative simulation of the forecast dynamics as in the
4-D approach may not produce a cost-effective reduction
in the analysis error as compared to, for example,
the MLEF filter analysis optimising the filtering cost func-
tion alone. However, one may still obtain the benefits of re-
initialisation of the forecast with a reanalysed prior by using
a simple hybridisation of the 3-D and 4-D smoothing
analyses.

Specifically, in a given fixed-lag smoothing cycle, one may
iteratively optimise the sequential filtering cost functions for
a given DAW corresponding to the new observations at
times ftL�Sþ1; . . . ; tLg as with the MLEF. These filtering

ensemble transforms not only condition the ensemble at the
corresponding observation time instance, but also produce
a retrospective analysis of a lagged state as in Eq. (3.109c)
with the EnKS. However, when the DAW itself is shifted,
one does not need to produce a forecast from the latest
filtered ensemble – instead one can initialise the next ensem-
ble forecast with the lagged, retrospectively smoothed
ensemble at the beginning of the last DAW. This hybrid
approach utilising the retrospective analysis, as in the clas-
sical EnKS, and the ensemble simulation over the lagged
states while shifting the DAW, as in the 4-D analysis of the
IEnKS, was recently developed by Grudzien and Bocquet
(2022), and is called the single-iteration ensemble Kalman
smoother (SIEnKS). The SIEnKS is named as such because
it produces its forecast, filter, and reanalysed smoother
statistics with a single iteration of the ensemble simulation
over the DAW in a fully consistent Bayesian analysis. By
doing so, it seeks to minimise the leading order cost of
EnVAR smoothing (i.e. the ensemble simulation in the non-
linear forecast model). However, the estimator is free to
iteratively optimise the filter cost function for any single
observation vector without additional iterations of the
ensemble simulation. In observation-analysis-forecast
cycles in which the forecast error dynamics are weakly non-
linear, yet other aspects of the cycle are moderately to
strongly non-linear, this scheme is shown to produce
a forecast accuracy comparable to, and at times better
than, the 4-D approach but with an overall lower leading-
order computational burden (Grudzien and Bocquet, 2022).

A schematic of the SIEnKS cycle for a lag of L ¼ 4 and
a shift of S ¼ 2 is pictured in Fig. 3.4. This demonstrates
how the sequential analysis of the filter cost function and
sequential, retrospective reanalysis for each incoming obser-
vation differs from the global analysis of the 4-D approach
of the IEnKS. Other well-known DA schemes combining
a retrospective reanalysis and re-initialisation of the ensem-
ble forecast include the running in place (RIP) smoother of
Kalnay and Yang (2010) and Yang et al. (2013) and the one
step ahead (OSA) smoother of Desbouvries et al. (2011) and
Ait-El-Fquih and Hoteit (2022). It can be shown that, with
an ETKF-style filter analysis, a single iteration of the ensem-
ble over the DAW, a perfect model assumption, and a lag of
L ¼ S ¼ 1, the SIEnKS, RIP, and OSA smoothers all coin-
cide (Grudzien and Bocquet, 2022).

3.5 Machine Learning and Data Assimilation
in a Bayesian Perspective

This final section demonstrates how the Bayesian DA
framework can be extended to estimate more than the
state vector, including key parameters of the model and
the observation-analysis-forecast cycle. In particular, the
Bayesian framework can be used to formulate techniques
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for learning both the state vector and part of, if not the full,
dynamical model. If this objective was always in the scope of
classical DA, it was actually made possible, significantly
beyond linear regression, by the introduction of machine
learning (ML) techniques to supplement traditional DA
schemes.

Incorporating ML into DA algorithms was suggested
quite early byHsieh andTang (1998), who clearly advocated
the use of neural networks (NNs) in a variational DA frame-
work. More recently this was put forward and illustrated by
Abarbanel et al. (2018) and Bocquet et al. (2019) with
a derivation of the generalised cost function from Bayes’
law, showing that the classicalML cost function for learning
a surrogate model of the dynamical model is a limiting case
of the DA framework, as in Eq. (3.117). This formalism was
further generalised by Bocquet et al. (2020), using classical
DA notation, for learning the state vector, the dynamical
model, and the error statistics attached to this full retrieval.
This section follows this latest paper, showing how to derive
the cost function of the generalised estimation problem.
Note that going even beyond this approach, attempting to
learn the optimisation scheme of the cost function, or even
the full DA procedure, an approach called end-to-end in
ML, is a subject of active investigations (Fablet et al.,
2021; Peyron et al., 2021).

3.5.1 Prior Error Statistics
For the sake of simplicity, again assume Gaussian
statistics for the observation errors pðykjxkÞ ¼ nðykjxk;RkÞ,
where the observation error covariance matrices
RL:1 :¼ fRL; RL�1; . . . ; R1g are supposed to be known.
The dynamicalmodel ismeant to be learned or approximated
and thus stands as a surrogate model for the unknown true
physical dynamics. Assuming that the model does not expli-
citly depend on time, its resolvent is defined by

xk :¼ Fk
Aðxk�1Þ þ ηk; ð3:113Þ

depending on a (possibly very large) set of parameters A.
Prototypically, A represents the weights and biases of an
NN, which are learned from the observations alongside the
state vectors within the DAW. The distribution for model
error, such as ηk in Eq. (3.113), is also assumed Gaussian
such that

pðxkjxk�1; A; QkÞ :¼ n
�
xkjFk

Aðxk�1Þ; Qk

�
; ð3:114Þ

where QL:1 :¼ fQL; QL�1; . . . ; Q1g are not necessarily
known. Further assume that these Gaussian errors are
white-in-time and that the observation and model errors
are mutually independent.

Note the intriguing status of QL:1 since it depends,
a posteriori, on how well the surrogate model is estimated.
This calls for an adaptive estimation of the model error
statistics QL:1, as the surrogate model, parametrised by A,
is better approximated.

3.5.2 Joint Estimation of the Model, Its Error Statistics,
and the State Trajectory

Following the Bayesian formalism, one may form a MAP
estimate for the joint pdf in A and xL:0 conditioned on the
observations, together with the model error statistics. This
generalised conditional pdf is expressed in the hierarchy

pðA; QL:1; xL:0jyk:1; RK:0Þ ¼
pðyL:1jxL:0; RL:0ÞpðxL:0jA; QL:1ÞpðA; QL:1Þ

pðyL:1; RL:0Þ
;
ð3:115Þ

where the mutual independence of the observation and
model error is used. Once again, this remarkably stresses
how powerful and general the Bayesian framework can be.

The first term in the numerator of the right-hand side is
the usual likelihood of the observations. The second term
in the numerator is the prior on the trajectory, given
a known model and known model error statistics. The
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(shift) SIEnKS diagram. An
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a forecast simulation over the
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final term of the numerator is the joint prior of the model
and the model error statistics, described as a hyperprior. The
associated cost function is derived proportional to

J DA�MLðA; xL:0; QL:1Þ ¼ �log  pðA; QL:1; xL:0jyL:1; RL:1Þ

¼ 1

2

XL
k¼1

�
‖ yk �HkðxkÞ ‖ 2Rk

þ logðjRkjÞ
�

þ 1

2

XL
k¼1

�
‖ xk � Fk

Aðxk�1Þ ‖
2
Qk

þ logðjQkjÞ
�
� log  pðx0;A;QL:1Þ:

ð3:116Þ

Note the resemblance of (3.116) with the weak-constraint
4D-VAR cost function of classical DA (Trémolet, 2006).
Very importantly, this Bayesian formulation allows for
a rigorous treatment of partial and noisy observations.
The classical ML cost function that uses noiseless, complete
observations of the physical system is derived from Eq.
(3.116), assuming that Qk is known, Hk ≡ INx , and setting
Rk to go to 0. Associating the initial data as y0 x0,
J DA�MLðA; xL:0; QL:1Þ becomes, in its limit,

JMLðAÞ ¼
1

2

XL
k¼1

‖ yk � Fk
Aðyk�1Þ ‖

2
Qk
� log pðy0; A; QL:1Þ:

ð3:117Þ

Such connections between ML and DA were first high-
lighted by Hsieh and Tang (1998), Abarbanel et al. (2018),
and Bocquet et al. (2019).

Solving the combined DA/ML problem, that is, minimising
Eq. (3.116), leads to several key remarks. First, as mentioned
earlier, this formalism allows one to learn a surrogate model of
the true dynamics using partial, possibly sparse and noisy
observations, as opposed to off-the-shelf ML techniques.
This is obviously critical for geophysical systems. Second, in
this framework, one fundamentally looks for a stochastically
additive surrogatemodel of the form in Eq. (3.113) rather than
a deterministic surrogate model, since ηk is drawn from the
normal distribution of covariance matrices Qk. Third, there

are many ways to carry out this minimisation, as discussed by
Bocquet et al. (2019) and Bocquet et al. (2020). Because the
state vectors and themodel parametersA are of fundamentally
different nature, and yet are statistically interdependent, one
idea is to minimise Eq. (3.116) through a coordinate descent
(i.e. alternating minimisations onA and xL:0), as illustrated by
Fig. 3.5. This was first suggested and successfully implemented
by Brajard et al. (2020), by using an EnKF for the assimilation
step (i.e. minimising on xL:0), and a deep learning (DL) opti-
miser for the ML step (i.e. minimising on A). This work was
extended to 4-D variational analysis using a 4D-VAR assimi-
lation step with a DL optimiser for the ML step by Farchi
et al. (2021).

3.5.3 Joint Estimation of the Model and the Error Statistics
A slightly different objective is to obtain aMAP estimate for
the surrogate model, irrespective of any model state realisa-
tion, if, for example, one is interested in the MAP of the
marginal conditional pdf

pðA; QL:1jyL:1; RL:1Þ ¼
ð
pðA; QL:1; xL:0jyL:1; RL:1Þ dxL:0;

ð3:118Þ

which is theoretically obtained by minimising

J ðA; QL:1Þ ¼ �log  pðA; QL:1jyL:1; RL:1Þ: ð3:119Þ

As pointed out by Bocquet et al. (2019), the marginal pdf
Eg. (3.118) can be approximately related to the joint pdf
through a Laplace approximation of the integral. Here,
however, one is interested in the full solution to this prob-
lem. This can be solved numerically by using the expect-
ation-maximisation (EM) statistical algorithm (Dempster
et al., 1977) jointly with the variational numerical solution
of Eq. (3.116). This was suggested in Ghahramani and
Roweis (1999) and Nguyen et al. (2019) and implemented
and validated by Bocquet et al. (2020).

3.6 Conclusions

Unifying techniques from statistical estimation, non-linear
optimisation, and even machine learning, the Bayesian
approach to DA provides a consistent treatment of

DA step ML/DL stepInitialisation

A

choose A0 update A
(A* , x*L:0)

A0

estimate xa
L:0

x
a
L:0

yL:0

Figure 3.5 Estimation of
both model and state trajec-
tory using coordinate descent
by alternately optimising on
the state trajectory using DA
and on the NN model
parameters using ML/DL.
The iterative loop stops when
an accuracy criterion is met.
Source: Farchi et al. (2021).
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a variety of topics in the classical DA problem, discussed
throughout this chapter. Furthermore, the Bayesian
approach can be reasonably extended to treat additional
challenges not fully considered in this chapter, such as esti-
mating process model parameters, handling significant
modelling errors, and including the optimisation of various
hyper-parameters of the observation-analysis-forecast
cycle. Estimation may even include learning the dynamical
process model itself, as in the emerging topic of DA/ML
hybrid algorithms. In this context especially, a Bayesian
analysis provides a coherent treatment of the problem
where either DA or ML techniques themselves may be
insufficient. This is particularly relevant where surrogate
ML models are used to augment traditional physics-based
dynamical models for, e.g. simulating unresolved dynamics
at scales too fine to be dynamically represented. The hybrid
approach in the Bayesian analysis provides a means to
combine the dynamical and surrogate simulations with
real-world observations, and to produce an analysis of
the state and parameters for which subsequent simulations
depend. This chapter thus presents one framework for
interpreting the DA problem, both in its classical formula-
tion and in the directions of the current state-of-the-art. In
surveying a variety of widely used DA schemes, the key
message of this chapter is how the Bayesian analysis pro-
vides a consistent framework for the estimation problem
and how this allows one to formulate its solution in
a variety of ways to exploit the operational challenges in
the geosciences.
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