FACT SHEET: LAKE MENDOCINO FORECAST INFORMED RESERVOIR OPERATIONS
PRELIMINARY VIABILITY ASSESSMENT WORK PLAN

PURPOSE: The Lake Mendocino Forecast Informed Reservoir Operations (FIRO) Preliminary Viability Assessment Work Plan (Work Plan) describes an approach for using modeling, forecasting tools and improved information to determine whether the Lake Mendocino Water Control Manual can be adjusted to improve flood-control and water supply operations. This proof-of-concept FIRO viability assessment uses Lake Mendocino as a model that could have applicability to other reservoirs.

BACKGROUND: The 1959 Lake Mendocino Water Control Manual (with minor updates in 1986), specifies reservoir elevations to control flooding and establishes the volume of storage that may be used for water supply. The Manual was developed using the best information available at the time, but it has not been adjusted to reflect changing climate conditions and reduced inflows over the past 30 years.

FIRO WORK PLAN: The FIRO Steering Committee* has developed a work plan for assessing the viability of FIRO that takes advantage of current science and technology. FIRO envisions modern observation and prediction technology that could provide water managers more lead time to selectively retain or release water from reservoirs based on longer-term forecasts. Optimizing reservoir operations potentially benefits water supply and environmental flows without diminishing flood control or dam safety.

This Work Plan presents an approach for conducting a proof-of-concept FIRO viability assessment using Lake Mendocino as a model. Specifically, it outlines a process for evaluating whether FIRO can support adjustments to the Manual. The work plan describes current technical and scientific capabilities, and outlines technical/scientific analyses and future efforts to demonstrate the potential of FIRO to improve reservoir management.

The assessment will present a suite of actions ranging from practical, short-term steps to longer-term research needs. If deemed viable, FIRO will likely be implemented incrementally, as science evolves and implementation criteria are met. FIRO follows adaptive management principles for continual improvement of reservoir operations.

In the case of Lake Mendocino, and much of the west coast, this hinges on opportunistically applying advances in monitoring and predicting atmospheric rivers, their associated precipitation and runoff.

While aimed at benefitting Lake Mendocino, the project has transferability potential, thus the Work Plan will document a process that can be replicated in other watersheds. It consists of the following steps:

- Develop evaluation criteria and methodology
- Develop evaluation scenarios
- Identify science needs and carry out necessary research projects
- Evaluate model results
- Evaluate FIRO viability (preliminary) and assess benefits
- Develop implementation strategies

(over)
The flow chart below shows how the assessment decisions will be made:

The general time frame for conducting the “preliminary” and “full” viability assessments is illustrated below:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Complete work plan</td>
<td>• Develop study strategy</td>
<td>• Assemble models</td>
<td>• Preliminary</td>
<td>• Finalize modeling</td>
<td>• Complete preliminary</td>
<td>Full assessment of</td>
</tr>
<tr>
<td>• Form task groups</td>
<td>• Agree on scenarios,</td>
<td>• Develop policy</td>
<td>model results</td>
<td>results</td>
<td>FIRO viability</td>
<td>FIRO viability</td>
</tr>
<tr>
<td>• Assess information</td>
<td>inputs</td>
<td>scenarios</td>
<td>available</td>
<td>test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Identify</td>
<td>• Convene modeling</td>
<td>• Install monitoring</td>
<td>• Begin economic</td>
<td>• Conduct stress</td>
<td></td>
<td></td>
</tr>
<tr>
<td>monitoring sites</td>
<td>discussion</td>
<td>stations</td>
<td>benefits analysis</td>
<td>test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Develop</td>
<td>• Develop evaluation</td>
<td>• Evaluate past</td>
<td>• Synthesize</td>
<td>• Continue economic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>evaluation criteria</td>
<td>scenarios</td>
<td>reservoir operations</td>
<td>atmospheric</td>
<td>benefits assessment</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Evaluate past forecast performance</td>
<td></td>
<td>river advances</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STEERING COMMITTEE CO-CHAIRS
Jay Jasperse
Sonoma County Water Agency

STEERING COMMITTEE MEMBERS
Michael Anderson
California State Climate Office,
Department of Water Resources
Levi Brekke
Bureau of Reclamation
Mike Dillabough
US Army Corps of Engineers
Michael Dettinger
United States Geological Survey
Rob Hartman
NOAA's National Weather Service
Christy Jones
US Army Corps of Engineers
F. Martin Ralph
Center for Western Weather and Water Extremes at Scripps Institute of Oceanography
Patrick Rutten
NOAA Restoration Center
Cary Talbot
US Army Corps of Engineers
Robert Webb
NOAA's Earth System Research Laboratory

SUPPORT STAFF
David Ford
David Ford Consulting Engineers
Arleen O'Donnell
Eastern Resarch Group
Ann DuBay
Sonoma County Water Agency

September 2015