Hydrologic Forecasting Capability and Gaps

Alan Haynes Hydrologist in Charge

NOAA/NWS – California Nevada River Forecast Center August 2019

Biggest Gaps in Hydrologic Forecasting Capability Based on User Needs

Skillful long-lead forecasts

- Hydrologic forecasting skill for floods is highly dependent on meteorological forecast skill which drops off considerably after just a few days and disappears after 2 weeks
- Probabilistic hydrologic forecast skill for seasonal forecasts is dependent on knowledge of snowpack

Rapid-onset flooding

- NWS legacy hydrologic forecasts are not designed to handle rapid-onset flooding
 - Hydrologic model time-step is six hours and skillful hourly and sub-hourly forcings don't exist
- National Water Model is a potential solution, but it needs skillful hourly and subhourly forcings

• Lack of extensive validation for probabilistic hydrologic forecasts

 Developing validation information for probabilistic hydrologic forecasts is resourceintensive and therefore limited

• High uncertainty in forecasting land-falling atmospheric rivers

 Land-falling atmospheric rivers are narrow and subject to modulation by smallscale atmospheric phenomena such as frontal waves which result in spatial and temporal errors

Evolution of Atmospheric & Hydrologic Modeling Capabilities

Hydrologic Modeling Visualization

Evolution of Atmospheric & Hydrologic Modeling Capabilities

Long-Term Trends in Precipitation Forecast Skill (national scale)

Nov 28th 2012

Dec 27th 2005

Nov 29th 2012

Dec 28th 2005

Nov 30th 2012

Dec 29th 2005

Dec 1st 2012

Dec 30th 2005

Dec 2nd 2012

Dec 31th 2005

Other Modeling Gaps & Challenges

- No estuary model connecting rivers with the ocean
- Dependence on rating curves
- Maintaining functional systems in an environment of continuously updated security measures

Ensemble Forecasts for Lake Oroville 10-Day Traces

Ensemble Forecasts for Lake Oroville 10-Day Volume

FEATHER RIVER - LAKE OROVILLE (ORDC1)

Latitude: 39.53° N Longitude: 121.52° W Location: Butte County in California

Elevation: 922 Feet River Group: Lower Sacramento

Issuance Time: Oct 21 2016 at 7:23 AM PDT

10-Day Accumulated Volume Plot

Verification

What Are We Doing About It?

What Are We Doing About It?

- Improving atmospheric river landfall forecasts
 - Collaborating with CW3E who is working hard on this!

Observing networks & Data

- Evaluating gaging networks and adding sensors as appropriate given funding
- Aerial Snow Surveys program
- CA-funded network of vertically-pointed radars, atmospheric river observatories
- Gap-filling radars in SF Bay area associated with AQPI
- Collection of scheduled reservoir releases

Hydrologic Ensemble Forecast Service

- Investigating improvements in handling of extreme events
- Providing support to projects such as Lake Mendocino FIRO
- Collaborating with CW3E on investigating use of WestWRF precipitation
- Long-lead or Sub-Seasonal to Seasonal Forecasts
 - Engaged with the Climate Prediction Center (CPC) on improving week 3-4 forecasts
- Rapid Onset Flooding (i.e., flash flooding)
 - Potential use of National Water Model

What's Holding Us Back?

California Nevada River Forecast Center

Alan S. Haynes

Hydrologist in Charge

National Oceanic & Atmospheric Administration National Weather Service 3310 El Camino Ave., Suite 227 Sacramento, CA 95821-6373 www.cnrfc.noaa.gov

Tel: (916) 979-3056 x328 Fax: (916) 979-3067 Cell: (916) 202-9473 E-mail: alan.haynes@noaa.gov