

Lake Mendocino: Environmental Considerations FIRO 2019

1. Background to NOAA Fisheries involvement

- 2. Russian River Salmonid ESA-listings & life histories (general)
- 3. Environmental limitations and regulations
- 3. FIRO: Potential Fisheries Benefits

Natalie Cosentino- Manning NOAA/NMFS Restoration Center Joshua Fuller NOAA/NMFS West Coast Region

NOAA Fisheries and FIRO

 NOAA Habitat Blueprint Initiative – Russian River Habitat Focus Area (2012 to present)

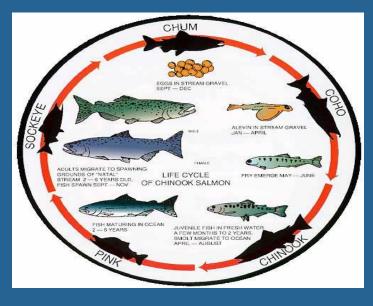
NOAA FISHERIES

- A. Multi-NOAA line office (NMFS, NWS, OAR, NOS) demonstration projects Six projects
 - Rebuilding endangered coho and threatened steelhead through habitat protection and restoration

FIRO

- Improving frost, rainfall, and river forecasts in the Russian River watershed
- Increasing community resiliency to flooding and drought through improved planning and water management strategies

2. NOAA Fisheries Biological Opinions (BiOps)


A. Interagency- consultations on the ESA and protections

ESU: California Coastal (CC) Chinook Salmon

Oncorhynchus tshawytscha Fall-run

General life history:

- Mainstem spawning/rearing
- <8 mos. in freshwater (juveniles)
- 2 4 yrs. in saltwater (sub-adults)
- Semelparous (1x spawners)

ESA-listing status: Threatened

DPS: Central California Coast (CCC) Steelhead Trout

Oncorhynchus mykiss Winter-run

CCC Steelhead, Russian River

CCC Steelhead, Russian River

CCC Steelhead, Russian River

General life history:

- Tributary/mainstem spawning/rearing
- 1-2 yrs. in freshwater (juveniles)
- 2 yrs. in saltwater (sub-adults)
- Iteroparous (repeat spawners)

ESA-listing status: Threatened

ESU: Central California Coast (CCC)

Coho Salmon

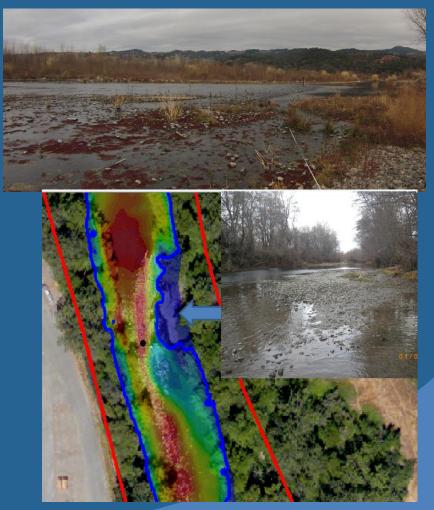
Oncorhynchus kisutch Fall-run

- Tributary spawning/rearing
- 1 yr. in freshwater (juveniles)
- 2 yrs. in saltwater (sub-adults)
- Semelparous (1x spawners)

ESA-listing status: Endangered

Fisheries and can FIRO help ?

NOAA FISHERIES


Cold and Clear water

Ample flows

Fish passage

Spawning

NMFS, Sonoma Water and Army Corps are engaged in monitoring to identify appropriate water conditions for fish.

Russian River Biological Opinion (2008):

- Minimum instream flow requirements (Fish flow EIR)
- 2. Ramping rates
- 3. Turbidity

Potter Valley Biological Opinion (2002):

- 1. Eel/Russian River trans-basin diversion
- 2. 2006 BiOp reduced flows from PVP
- 3. FERC Re-licensing ~ April 2017 2022

Russian River BiOp: Flows

NOAA FISHERIES Higher summer flows/velocities from CVD impacting 34 miles of juvenile steelhead rearing habitat within upper Russian River

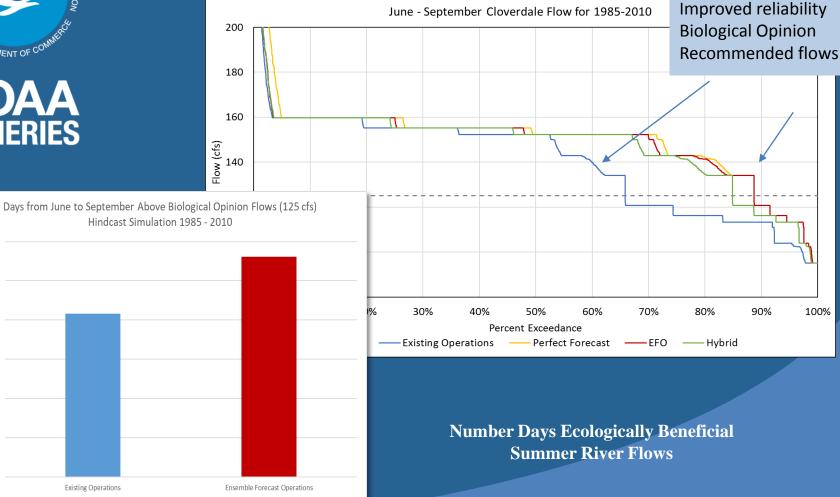
2) Draft Environmental Impact Report (EIR) in 2016~created new fisheries flow prescriptions

3000

2500

Conditions 5000

itat

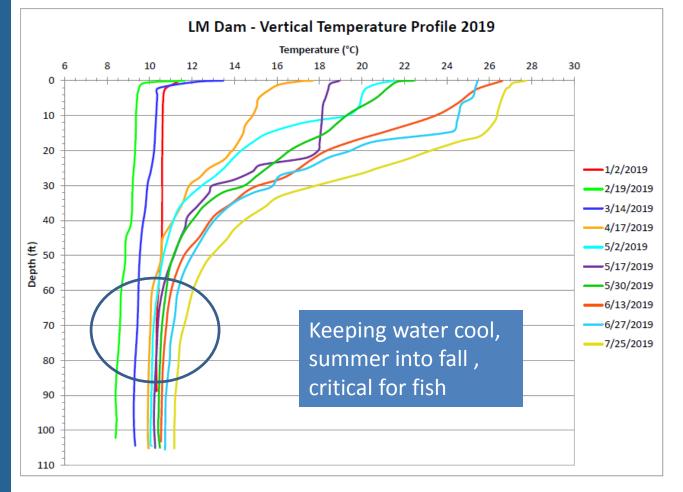

Habi 1500

Preferred 1000 Days

500

0

FIRO - Potentially Improves In-Stream Flows



Blue = Existing Operations Red = Forecast Informed Operations – "Hybrid" Operations

FIRO - Potentially Improves Cold Water Pool January – July

NOAA

Russian River BiOp: Flow ramping effects to salmonids

1. Minimize the likelihood of stranding and mortality of salmonids due to ramping-down of CVD releases

2. Minimize habitat impacts from aggressive ramp ups

Season	Daylight Rates ³	Night Rates
February 16 to June 15 ¹	No Ramping	2 inches/hour
June 16 to October 31 ²	1 inch/hour	1 inch/hour
November 1 to February 15	2 inches/hour	2 inches/hour

1 Salmon fry are present

2 Steelhead fry are present

3 Daylight is defined as one hour before sunrise to one hour after sunset FIRO : May not affect this criteria – but can help advance the science for future operations.

Russian River BiOp: Turbidity associated with CVD

 Prolonged exposure to salmonids ~ negative impact to juvenile salmonid growth and spawning gravel quality (summer ~ spring)

NOAA FISHERIES 2) Reduces hatchery steelhead angling opportunities downstream (winter)

FIRO : May not affect this criteria – but can help advance the science for future operations.

How does FIRO potentially benefit fisheries?

- 1. Coldwater pool storage reliability:
 - a) Adult Chinook upstream migration (fall)
 - b) Juvenile steelhead rearing conditions (summer)

- Downstream fisheries flows enhancement and reliability:
 - a) Higher frequency of preferred "NORMAL YEAR" vs."DRY YEAR" flow schedules
 - b) Reduce the need for emergency changes in stream flows = less regulatory intervention = savings to the public
- 3. More storage = Operational flexibility
 - a) Water availability for critical fisheries management situations (i.e. Pottery valley two basin solution)
 - b) Stakeholder confidence = Less conflict for water resources, supports other uses of RR water.

How does FIRO potentially benefit fisheries?

4. Resilient Watershed

a) In conjunction with other conservation and restoration measures, FIRO can be part of a greater effort to conserve water and provide quality habitat within a watershed.

