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OUTLINE

* Machine Learning (ML) methods

ML for weather
ML for Subseasonal to Seasonal (S2S) predictions

e What’s next?
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ML FOR WEATHER PREDICTIONS



MACHINE LEARNING / CONVOLUTIONAL NEURAL NET (GFSNN)
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ML-BASED DETERMINISTIC PREDICTION OF IVT IN REAL-TIME
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ML-BASED DETERMINISTIC PREDICTION OF IVT IN REAL-TIME
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ML-BASED DETERMINISTIC PREDICTION OF IVT IN REAL-TIME
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ML-BASED DETERMINISTIC PREDICTION OF IVT IN REAL-TIME
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ML-BASED PROBABILISTIC PREDICTION OF IVT
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Predictors: IVT, u500, v500, Z500, lat/lon of prediction
Training: 10 years of GFS (Oct 2008 — Apr 2016)
Testing: 1 Year (Oct 2017 — Apr 2018)

Ground-truth: MERRA 2

Will Chapman, Luca Delle Monache, Stefano Alessandrini (NCAR)



34-YEAR WEST-WRF REFORECAST

* We dynamically downscaled with West-WRF the ~0.5 degree Global
Ensemble Forecast System to 9 and 3 km for a 34-year period

» Computing resources provided were by the U.S. Army Engineer
Research and Development Center (ERDC)

200N

5 days (3-km domain) and 7 days (9-km domain). 60 vertical levels,

adaptive timestep
* Goals
o Further develop ML algorithms

o Assessing the benefits to CNFRC operations of using the reforecast to

calibrate the Meteorological Ensemble Forecast Processor (MEFP)

ﬁ o In-depth process-based studies

\

Dan Steinhoff, Brian Kawzenuk, Rachel Weihs, Caroline Papadopoulos + CW3E Team



A CONVOLUTIONAL NEURAL NETWORK FOR PRECIPITATION PREDICTION

West WRF
T ML Method: Convolutional Neural Network
24-h accumulated precipitation
Training: 31 years of West-WRF Reforecast
Testing: 2 Years (1987-1988)

Ground-truth: PRISM

“- o L e e e
Intern), Will Chapman, Negin Hayatbini,
RMSE (mm) 16.5 % Forest Cannon, Luca Delle Monache

Correlation 0.76 0.80 5%
Bias (mm) 0.14 0.12 1.6 %



ML FOR SUBSEASONAL-TO-SEASONAL (S2S) PREDICTIONS



MACHINE LEARNING FOR S25S
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Can recent developments in machine learning improve our (limited) seasonal
forecasting skill for Western US precipitation?

Few studies have attempted machine learning for S2S — mainly because these
tools are extremely data hungry, whereas at seasonal timescales observations are
heavily data limited

To circumvent this, we propose training various machine learning algorithms on
large climate model ensembles. These climate model ensembles span several
thousands of years (perturbed initial condition experiments) providing unique
opportunities to “learn” relevant teleconnections and non-linear interactions



MACHINE LEARNING FOR S2S — PREDICTAND CLUSTERS

K-means (K=4) on CESM-LENS 3-monthly PR std. anomalies
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* The same clusters show up in observations as found in
CESM (suggesting model captures these broad
precipitation patterns well)
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DECISION TREES -> RANDOM FORESTS

Decision tree Random Forest
Root node *
Dep t h N, features N, features N, features N, features
| es | [Educatlon] TREE #1 TREE #2 TREE #3 TREE #4
| ':z: lo:o ¥ CLAiSS C CLAISS D CLATS B CLAISS C

Binary classification from decision tree for
deciding to give credit based on income,
age, education and home ownership

* More important variables are generally closer to the root (i.e. lower depth)
* Random forests are made up of several decision trees (each tree gives a vote)
* Non-linear interactions between variables can be represented

Lead: Peter Gibson



MACHINE LEARNING FOR $25 — METHOD SUMMARY

Lagged predictor Predictand
variables (~100) Predict 1 of 4 Classes
ML algorithm

« SST
» Tropical Deep
convection > >

* Height anomalies

» Jet stream \/

Random Forest
XGBoost

Neural Networks
LSTM Neworks

@ Model is trained separately for predicting NDJ and JFM 3-monthly seasons



COMPARISONS TO NMME PHASE 2 MODELS - JFM SUMMARY

Target Season (JFM)
S
8

LN years
EN years

ML (RF)

ML (XGBoost) —

_ouperf

Ens_Mode_Su

REF (CPC)

ClL4

ClL.3

Cl.2

Cl.1

Correct classification possible outside of
ENSO years

*  When the model is wrong sometimes it still
gets the sign correct (e.g. CI3/Cl4 and
CI1/CI2 for SoCal)

+ Ens_mode_ML = mode ensemble of the
four ML models

« Ens_mode_Super = mode ensemble of the
eight ML + NMME models

If the mode is not unique — the forecasted class
is the historically most frequent class

Peter Gibson, Will Chapman, Alphan Altinok (JPL), Mike DeFlorio, Luca Delle Monache



ENSEMBLE WITH NMME MODELS - JFM

JFM d—classes » Accuracy: correct predictions / total predictions

« Baseline: horizontal line determined by most

s frequent class
 Random model: a random guess prediction
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Peter Gibson, Will Chapman, Alphan Altinok (JPL), Mike DeFlorio, Luca Delle Monache



INTERPRETABLE ML: LOOKING UNDER THE HOOD

3-way variable importance
JFM . .
oo Variable importance

Physically reasonable predictors are showing up ....

* Tropical Pacific SST (ENSO related) is most

_ 00107 important predictor

: oot ()

: o * Western Pacific SST also important

8 ® 0

2 : ~* Tropical deep convection (VP200) also important
©

3 0005

. .
* Local SST (NP) and local circulation (U200/Z500)

far less important (but are used as interaction
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Mean minimum tree depth Lead: Peter Gibson



Total Precipitation Relative Anomaly (%)
oy _Predictor: Oct 2019 SST Forecast Valid: Jan - Mar 2020

OTHER MACHINE LEARNING EFFORTS

| -

Baja-Pac Alaskan-Pac

70°N

40°N . ; L

124°W  122°W 120°W  118°W 116°W 114°W 112°W 110°W 108°W 106°W

Shulgina et al. (In preparation, 2020)
Canadian-Pac Offshore-CA

S ECMWEF vs. climatology ECMWF vs. PDF draw
FL v 5] © _ ® _
: * o O N o O N
L [ ) o s
......... © | 1 ow © | ow
o — o
3 < | 3 o«
o © o ©
o o
o o
) |_H_‘ )
o o
. ‘ | ‘ . FEE B
r o S
week12 week34 week56 week12 week34 week56

Guirguis et al. (GRL, 2020)
@ Gibson et al. (In preparation, 2020)



WHAT’S NEXT?

* Develop ML models for precipitation (0-5 days)

Negin Hayatbini (CW3E Postdoc), Anirudhan Badrinath (CW3E Summer Intern, UC Berkeley Undergrad,
CS), Siva Prasad Varma Chiluvuri (UCSD Graduate Student, Physics)

e Probabilistic Predictions of IVT (0-7 days)

— Complete development and testing of Bayesian Neural Networks (Lead: Will Chapman)
— Explore Convolutional Neural Networks (Lead: Will Chapman)

e ML for S2S

— Complete development and testing of Decision Tree and other ML methods and comparison with
Dynamical models (Peter Gibson, Will Chapman, Alphan Altinok — JPL, S2S Team)

— Interpretable learning (Peter Gibson, Will Chapman, S2S Team)

— Generate operational outlooks for best performing methods (S2S team)

ML for the Ensemble Forecast Operations (EFO; Delaney et al., WRR 2020)



©

Thank you!
Luca Delle Monache
ldm@ucsd.edu



