CALIFORNIA DEPARTMENT OF WATER RESOURCES

Merced Watershed Study INTEGRATED WATERSHED | CLIMATE VULNERABILITY | FLOOD-MAR | FIRO-MAR

August 4[™], 2022

DAVID ARRATE

Study Purpose & Goals

- Proof of concept study
- Integrated Watershed Modeling
- Assess vulnerability and adaptation
- Evaluate multi-sector effects
- Template for future studies and projects

Background

- Merced watershed
- One major reservoir
- 862 miles of conveyance
 - Main Canal
 - Northside Canal
- 132,000 acres of agricultural land
 - Merced Subbasin
 - Turlock Subbasin

Climate Change

- Decision scaling approach
- 100 years of simulated hydrology - 1900 to 1999
- 30 climate scenarios
 - 0° to 4° Celsius increase in temperature
 - -20% to +30% change in precipitation

Average Runoff into Merced Basin (11/1 - 3/31)Baseline Average = 434 TAF

Model Integration Flowchart

Modeling Beyond Study Area

Watershed Scale Modeling

Watershed Scale Modeling

Potential Recharge Sites

Flood-MAR WAFR ResSim & HMS

Recharge Optimization GRAT

Groundwater Operations FM2SIM

Watershed Scale Modeling

Climate Vulnerability – Select Results

Performance Indicator: Decline | No significant change |

maproveraent – Subject to Change

	Watershed Conditions	Upper Watershed Runoff	Oct – Sep	TAF/ year	1,123	1,277	+154
			Nov – Mar	TAF/ season	434	688	+254
			Apr – Oct	TAF/ season	689	589	-100
		Applied Demand	Agricultural Demand (Oct – Sep)	TAF/ year	800	854	+54
	Flood Risk	Merced River Flood Conditions	Maximum simulated flow	cfs	6,000	42,400	+36,400
			# Years with flows > 7300 cfs	Years	0	9	+9
			# Days with flows > 7300 cfs	Days	0	112	+112
	Water Supply/ Surface Water (SW)	Lake McClure Storage	End of October Storage	Avg. TAF	518	474	-44
			# Years allocation $\leq 80\%$	Years	7	7	0
		SW Deliveries	Oct – Sep	TAF/ year	355	372	+17
*	Water Supply/ Groundwater (GW)	GW Pumping	Oct – Sep	TAF/ year	466	499	+33
		ΔGW Storage	Change in basinwide GW storage	TAF/ year	-50	-60	+10

VULNERABILITY CURRENT DT3DP1.1 Difference BASELINE

CLIMATE VULNERABILITY (1956 EVENT)

Preliminary Results – Subject to Change

Flood-MAR Implementation Scenarios

	Recharge using Excess Flows			Rechar	ge + Reserv	oir Reop	Recharge + Reservoir Reop + Infrastructure Improvements		
	Canal Only	Canal + On-Farm	Maximum Canal + On Farm	FIRO	FIRO/ Recharge Pool	Recharge Pool	FIRO	FIRO/ Recharge Pool	Recharge Pool
Management Emphasis				Ecosystem	DAC's Subsidence	Recharge Retention	Ecosystem	DAC's Subsidence	Recharge Retention
Current Climate									
Future Climate								~	

Hybrid Reoperation Example

Recharge using High Flows

- During flood management season November 1 through March 31
- Excess flows threshold **90th percentile monthly flow** Delta Excess Conditions
- Restricted by conveyance capacity
- Canal and on-farm recharge

RECHARGE USING HIGH FLOWS Preliminary Results – Subject to Change

Reservoir Reoperation – L3 FIRO-MAR

- Increases flood release capacity (6,000 +1,900cfs)
- FIRO Operations (5-day forecast period)
- Pre-release ahead of large forecasted inflows
- 50 TAF FIRO-MAR Zone
- Increased minimum flow release
- Eco Pool Operations
 - Eco Pool Account (reshaping flood control and snowmelt releases)
 - Shorebird release
 - Off channel habitat inundation release
 - Spring pulse release

L3 FIRO-MAR 000 +1,900cfs) riod) ed inflows

L3 FIRO-MAR – FUTURE CLIMATE (1956 EVENT)

Preliminary Results – Subject to Change

FIRO/Recharge Pool Reoperation – L3 Hybrid-MAR

- FIRO-MAR Operations
- Increases flood release capacity (6,000 +1,900cfs)
- Draws storage down to 50TAF below TOC
- Tracks the cumulative storage deficit created by Recharge Pool releases
- The deficit is refilled when:
 - Delta is in excess conditions
 - Reservoir would've spilled during baseline operations

,000 +1,900cfs) ow TOC cit created by

Flood-MAR Adaptation Potential – Select Results

Performance Indicator: Decline | No significant change | Improvement

Proliminary Results - Subject to Change

	r remininary ives	uns – Subject	Performance evaluated with respect to <u>Baseline Current</u>			Performance evaluated with respect to <u>Baseline</u> <u>DT3DP1.1 Scenario</u>					
					VULNERABILITY			ADAPTATION PERFORMANCE			
			CURREN T	DT3DP1. 1	DT3DP1.1						
			BASELINE		High Flow	FIRO-MAR	Hybrid-MAR				
	Flood Risk	Merced River Flood Conditions	Maximum simulated flow	cfs	6,004	42,412	40,552	15,600	13,850		
			# Years with flows > 7300 cfs	Years	0	9	9	1	3		
			# Days with flows > 7300 cfs	Days	0	112	82	10	23		
	Water Supply/ Surface Water	Lake McClureStora ge	End of October Storage	Avg. TAF	518	474	474	472	454		
	(SW)		# Years allocation \leq 80%	Years	7	7	7	8	8		
*		SW Deliveries	Mar – Oct	TAF/ year	355	372	372	369	367		
	Water Supply/	GW Pumping	Oct – Sep	TAF/ year	466	499	499	501	504		
	Groundwate r (GW)	∆ GW Storage	Change in basinwide GW storage	TAF/ year	-50	-60	-51	-32	-21		
CA V	Flood-MAR	Merced River WAFR	Avg. annual physically available Water Available For Recharge	TAF/ year	n/a	n/a	70	95	124		

Metrics Development

Flood-MAR Watershed Studies

- Updates to FIRO-MAR scenarios
- Weather Generator
- Probabilistic forecast of inflow vs. perfect foresight
- FIRO forecast window (5 to 15-day)
- FIRO zone determination
- Eco Releases as result of FIRO operations, and determination of Eco-Pool account

CALIFORNIA DEPARTMENT OF WATER RESOURCES

DAVID.ARRATE@WATER.CA.GOV

MERCED IRRIGATION DISTRICT WATER & POWER

Sustainable Conservation

