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1941 2050

Hindcast Period
Error = Observations - Forecast
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1941 2050

Non-Hindcast Period
Synthetic Forecasts = Observations – Synthetic Error
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Ensemble forecasts (and ensemble forecast error) are:
• Needed for multiple lead times and locations
• Correlated across lead times
• Correlated across locations
• Autocorrelated in time
• Distributed in funky ways
• Correlated with the observations
• Correlated across ensemble members

Intro | Approach | Results | Next Steps

Challenges
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Approach

Statistical 
model of 
forecast errors 
☺ 



7

Method 1 (syn-HEFS): 
direct synthetic forecasts 
of streamflow

Method 2 (syn-GEFS): 
synthetic forecasts of GEFS 
prcp/temp, then pass 
through HEFS

Intro | Approach | Results | Next Steps

Approach
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Lake Mendocino + Russian River
• 3 locations
• 14 lead times

• Climate Forecasts – Global Ensemble 
Forecast System (GEFS v10)

• Hydrologic Forecasts – Hydrologic 
Ensemble Forecast System (HEFS)

Intro | Approach | Results | Next Steps

Approach
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Results

Closest ‘syn-HEFS’ sample

February 1986 Flood

Synthetic Forecasts 
(3 locations, 14 lead times)

Lake Mendocino 
FIRO-based Systems Model 

Forecast Informed System 
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Intro | Approach | Results | Next Steps

Next Steps and New Directions

1
Algorithmic Improvements: Focus on synthetic 
forecast fidelity during the largest extremes, especially 
to replicate ‘false positives’ seen in HEFS 

2
Testing FIRO policies: Calibrate and validate FIRO 
policies to synthetic forecasts over different 
periods to evaluate robustness 

3
FIRO for Climate Resilience: Couple synthetic 
forecasts with climate projections to enable FIRO 
evaluation under climate change. 



Thanks!

13

Intro | Approach | Results | Next Steps



Additional Slides
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Rank Histograms
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‘Ideal’ ensemble = observation equally likely to fall in any bin
In other words, each bin has ~ same number of observations

Repeat for each lead…

=    Observation
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Ensemble spread should be 
reflective of the ensemble mean 
error

In a well calibrated forecast, 
spread = error (1:1 line)

Can more directly show 
conditional issues with dispersion 
or bias

good

biased or 
under-dispersed

over-dispersed

Binned Ensemble Spread
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Binned Spread Error Diagram
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Ensemble Continuous Ranked 
Probability Score (eCRPS)

eCRPS is a discrete ensemble 
representation of this

Wilks, D. S. (2019)

• Lower is 
better

• Best possible 
score is 0

Intro | FIRO | PIML | Conclusions
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Validation of Synthetic 
Forecasts with FIRO

Lake Mendocino 
FIRO-based Systems Model 

Synthetic Forecasts 
(3 locations, 14 lead times)

1985-2010

Forecast Informed System 
Operations



St
o

ra
ge

 T
im

e 
Se

ri
es

 (
ac

-f
t)

St
o

ra
ge

 D
is

tr
ib

u
ti

o
n

 (
ac

-f
t)

Extension of FIRO with 
Synthetic Forecasts

Lake Mendocino 
FIRO-based Systems Model 

Synthetic Forecasts 
(3 locations, 14 lead times)

1949-2010

Forecast Informed System 
Operations


