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The Problem
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A Possible Solution
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Challenges

Ensemble forecasts (and ensemble forecast error) are:

Needed for multiple lead times and locations
Correlated across lead times

Correlated across locations

Autocorrelated in time

Distributed in funky ways

Correlated with the observations

Correlated across ensemble members



Approach
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Statistical
model of
forecast errors
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Approach

Method 1 (syn-HEFS):
direct synthetic forecasts
of streamflow

Method 2 (syn-GEFS):
synthetic forecasts of GEFS
prcp/temp, then pass
through HEFS
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Approach
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Results
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Results

—
)
-

O
c
u
eT]
()
| -
)
-+
(9p)]
)
=
O
)
©
C
Q

Synthetic Forecasts
(3 locations, 14 lead times)

~

j‘> Lake Mendocino

FIRO-based Systems Model

J

~

)

Forecast Informed System
Operations

February 1986 Flood

Lake Mendocino Storage

140000

120000 =

100000 =

80000 —

60000

40000 -

===+ Spillway Crest

20000 - == PFO
=== CNRFC

Synthetic

Closest ‘syn-HEFS’ sample

- 769.4

—~ 755.7

—~ 741.4

[~ 725.9

—~ 706.4

641.7

Date

elevation (ft)



Intro | Approach | Results | Next Steps

Next Steps and New Directions

forecast fidelity during the largest extremes, especially

@ Algorithmic Improvements: Focus on synthetic
to replicate ‘false positives’ seen in HEFS

policies to synthetic forecasts over different

@ Testing FIRO policies: Calibrate and validate FIRO
periods to evaluate robustness

FIRO for Climate Resilience: Couple synthetic
@ forecasts with climate projections to enable FIRO
evaluation under climate change.
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Thanks!
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Rank Histograms

P = Observation

‘Ideal’ ensemble = observation equally likely to fall in any bin
In other words, each bin has ~ same number of observations
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Binned Spread Error Diagram

Ensemble spread should be
reflective of the ensemble mean
error

In a well calibrated forecast,
spread = error (1:1 line)

Can more directly show
conditional issues with dispersion
or bias

Binned Ensemble Mean Error

biased or
under-dispersed

good

over-dispersed

_a
Binned Ensemble Spread
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Ensemble Continuous Ranked
Probability Score (eCRPS)

F(y)
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Validation of Synthetic

Forecasts with FIRO
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Extension of FIRO with 100 —~ -

Synthetic Forecasts
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