CW3E Hydrologic Modeling/Forecasting Efforts: From Process-Based to Data-Driven

Ming Pan, CW3E (CW3E Hydrology/S2S/Weather Teams and Partners)

Session: Improving Inflow Forecasts - Progress on Hydrologic Forecasting

Wednesday 3 August 2022

2022 FIRO Workshop 2-4 August 2022 Hosted by the Center for Western Weather and Water Extremes

Center for Western Weather and Water Extremes

Background: role of hydrologic modeling in FIRO

Weather/Climate

Hydrology

Engineering/App

CW3E Hydrologic Monitoring/Forecasting: Basic Framework

CW3E Hydrologic Monitoring/Forecasting: Forcing Data Engine

CW3E Hydrologic Monitoring/Forecasting: Forcing Data Engine

CW3E Hydrologic Monitoring/Forecasting: Forcing Data Engine

QPE improvement (work in progress):

- Hourly gauge-based estimates with site QC
- Sampling bias
- Orographic
- Snow undercatch
- Freezing level (precip phase)

CW3E Hydrologic Monitoring/Forecasting: Reanalysis

CW3E Hydrologic Monitoring/Forecasting: Reanalysis

CW3E Hydrologic Monitoring/Forecasting: NRT Monitoring

CW3E Hydrologic Monitoring/Forecasting: NRT Monitoring

CW3E Hydrologic Monitoring/Forecasting: NRT Monitoring

EnKF

EnKF state update is a weighted sum of inputs:

$$\mathbf{x}_{t}^{\prime\prime(i)} = \mathbf{x}_{t}^{\prime(i)} + \mathbf{K}_{t} (\mathbf{z}_{t} - \mathbf{H}_{t} \mathbf{x}_{t}^{\prime(i)})$$
$$= w_{x} \mathbf{x}_{t}^{\prime(i)} + w_{z} \mathbf{z}_{t}$$

 $\mathbf{x'}_{t}^{(i)}$:prior estimate (ESP) $\mathbf{x''}_{t}^{(i)}$:posterior estimate (merged) \mathbf{z}_{t} :additional forecast info

How to determine weights: if CCA forecast explains r^2 of the variability, then the combined (fused) forecast ensemble should have its spread reduced by r^2 , therefore:

$$w_x = 1 - r^2$$
 and $w_z = r^2$

Station	50%	0	90%	6	10%	AVG		
Month	KAF	%AVG	KAF	%AVG	KAF	%AVG	KAF	
Feather River at Oroville								
June 2022	95	32	94	32	107	36	298	
July 2022	80	55	80	55	89	62	144	
August 2022	70	72	68	70	92	95	97	
September 2022	65	76	62	72	92	107	86	
October 2022	99	101	74	74	245	248	99	
November 2022	338	184	123	67	739	403	183	
April-July total 2022	897	54	895	54	913	55	1666	
Yuba River near Smartsville								
June 2022	44	24	44	24	64	35	185	
July 2022	19	34	16	28	28	50	56	
August 2022	13	62	12	58	23	110	21	
September 2022	20	113	16	92	33	185	18	
October 2022	121	378	29	91	243	761	32	
November 2022	215	250	147	170	477	554	86	
April-July total 2022	532	55	531	55	573	59	973	
American River below Folsom Lake								
June 2022	87	35	86	35	113	46	245	
July 2022	22	32	20	29	23	34	69	
August 2022	5	31	5	31	12	72	16	
September 2022	10	81	8	65	12	98	12	
October 2022	20	74	19	69	177	660	27	
November 2022	201	236	80	93	836	982	85	
April-July total 2022	741	61	735	60	781	64	1223	

Last modified

Apr 5, 2022 me

Monthly monitor/forecast updates:

1

<u>Status (mark too)</u>: excess (VM+Hybrid 3 a Ministance injectory): node one-proposed at the Markon Center for Annotation (Markon (Markon)) and Exation on an obserband of data designments in hybridage models): it is being used operationally if and annotation on a data of the analysis of constant and annotation (Markon) and annotation (Markon) and and in the analysis of constant and annotation (Markon) and annotation (Markon) the Ministry (Markon) and annotation (Markon) and annotation (Markon) the Ministry (Markon) and Markon (Markon) and Annotation (Markon) the Ministry (Markon) and annotation (Markon) and Annotation (Markon) the Ministry (Markon) and annotation (Markon) annotation (Markon) annotation (Markon) anno

5

close-to-average precipitation over California, with state and along the Sierras. May was rather dry a	above-average over line northern part of the pain.	1.3 Snowpeck
1.2 Temperature		-
	S.	and the second se
April 2022	May 2022	Figure 1.3 WRP-Hs and May 31, 2

X Forecast_ESP+CCA_20220401.xlsx

Name ↑

File size

60 KB

Modified

12:02 AM by me \, 🔸 🔊

B120 > Seasonal Water Supply Forecast > Forecast_Data -

۲	CW3E Water Supply Forecast Updates 2022-02-01	Feb 11, 2022 me	_
۲	CW3E Water Supply Forecast Updates 2022-03-01	Mar 2, 2022 me	-
۲	CW3E Water Supply Forecast Updates 2022-04-01	Apr 1, 2022 me	-
۲	CW3E Water Supply Forecast Updates 2022-04-05	Apr 5, 2022 me	-
۲	CW3E Water Supply Forecast Updates 2022-05-01	May 9, 2022 me	-
۲	CW3E Water Supply Forecast Updates 2022-05-05	May 6, 2022 me	_
۲	CW3E Water Supply Forecast Updates 2022-06-01	Jun 2, 2022 me	21.5 MB
x	Forecast_ESP_20220201.xlsx	Feb 11, 2022 me	17 KB
x	Forecast_ESP_20220301.xlsx	Mar 2, 2022 me	60 KB
x	Forecast_ESP_20220401.xlsx	Apr 1, 2022 me	60 KB
x	Forecast_ESP_20220501.xlsx	May 2, 2022 me	60 KB
X	Forecast_ESP_20220601.xlsx	12:02 AM me	15 KB
X	Forecast_ESP+CCA_20220201.xlsx	Feb 11, 2022 me	17 KB
X	Forecast_ESP+CCA_20220301.xlsx	Mar 8, 2022 me	60 KB

Forecast_ESP_20220601														
h		100% 🔻 \$	% .0 <u>_</u> 0. %) 1	23 🕶	Default (C	a 🔻 12	- в 2	5	A	è. ⊞	17 17 17	≣ •	<u>+</u> +
A1		Station												
	A	В	С			D	E	F			G	н		
1	Station	50%			90%			10%				AVG		
2	Month	KAF	%AVG		KAF		%AVG	KAF		%AVC	i i	KAF		
3	Trinity River ne	ar Lewiston Lak	e	0		11	0		11		0		100	
4	June 2022	2		8		2	8		11		13		136	
0	July 2022	2		7	7	0			2		17		12	
Ð	\$⁺ ⊚	<u> </u>	⊞ (i)			0	0		2		31		7	
						3	20		12		78		15	
	Eorer	Enroppet ESP 20220 V			L	12	27		242		553		44	
	601 x	lsy	220 1		L	106	17		108		17		628	
	0011	ion				13	25		16		31		52	
						12	53		15		67		23	
	Details	A	ctivity			11	72		17		111		15	
				n.		11	81		18		135		14	
	Station 50%	92% 10%	24A		L	16	86		138		759		18	
	Month KAF 55KKG Trinity River near Lewiston Lake Iwe 2022 11	647 SANG KAF 55 8 11 8 11	8 136		-	32	98		94		282		33	
	August 2022 0 Sigtember 202 0 October 2022 4	0 0 0 2 0 0 0 2 28 3 20 12	17 12 31 7 78 15			79	27		86		29		296	
	April-buly total : 507 Sacramento Riser at Delta Jano 2022 13	87 12 27 242 17 166 17 108 26 13 25 16	353 44 17 628 31 52			39	50		41		53		78	
	149 2022 12 August 2022 12 Saptamber 202 13 Ortholer 202 62	55 12 53 15 79 11 77 17 96 11 81 18 41 15 86 138	67 23 111 15 185 14 299 18			39	59		49		73		66	
	November 2022 45 1 April-Fulg total 2 81 McCloud River above Shasta Lake	35 32 98 94 28 79 27 86	282 33 29 296			41	68		59		99		60	
	14/0 2022 2/0 14/y 2022 4/0 August 2022 4/6 Sigter ker 202 5/8 1	30 39 50 41 61 39 59 40 77 41 68 59 98 42 84 78	53 78 73 66 99 60 180 56			47	84		73		130		56	
	October 2032 80 1 November 2022 75 5	37 60 102 101 13 68 103 507	172 59 361 67		L	60	102		101		172		59	
					L	68	103		107		161		67	
	Who has acc	cess			L	185	49		196		52		378	
		🔊 🦚 🙉	+18		-	150	75		162		80		202	
						132	73		161		105		153	
	Manage acces	s				137	101		162		120		135	
						156	112		238		171		140	
	System prop	oerties				182	116		394		252		156	
	Туре	Excel				175	103		347		205		170	
	Sizo	15 KB				633	64		670		68		987	
	0120	75 KD +												
	Storage used	/ 5 KB Owned by UC S	an Diego											
	Location	Forecast_Data												
	Creator	me												

Data-Driven Alternative Modeling: Machine Learning (ML)

Machine Learning: statistics on steroids

- Any inputs, any predictive connections, any functional relationships, exhaustive extraction, ...
- Requires data for training, over-fitting, curse of dimensionality, ...

Are you sure? Can you verify? Why so dependent on training?

Runoff Hydrology:

- Many processes at many spatial and temporal scales – what matters at what time/location/scale/circumstance?
- Low dimensionality: watershed runoff is the primary target)
- Lack measurements to verify assumed physical processes
- Still need tuning against data

Data-Driven Alternative Modeling: Machine Learning (ML)

Long Short Term Memory (LSTM)

State-space (Markovian) type of dynamic processes

(Kratzart et al., 2018)

How we're trying to improve inflow modeling:

Data

- Better QPE/QPF (orographic, undercatch, sampling bias, phase, etc.)
- Long-term consistency (bias correction, data-driven approaches)
- Modeling
 - Physical process based modeling (at fine scales)
 - Data driven modeling like ML (at watershed and daily scales)
- Assimilation/fusion (snow, soil moisture, groundwater, etc.)
 - Traditional DA
 - Differentiable ML

Data-Driven Alternative Modeling: Machine Learning (ML)

Regression Trees

Many many more ...

Ming Pan:

- Lead hydrologic modeling/forecasting research at CW3E since 2021
- Background in hydrologic modeling, remote sensing, data assimilation
- Research scholar at Princeton University before joining CW3E
- PhD in hydrology from Princeton University (2006)

