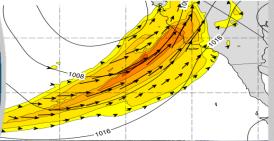


US Army Corps of Engineers


FIRO Screening Process

9th Annual FIRO Workshop August 3, 2022

Elissa Yeates – USACE ERDC

PREWAY TAINTER GATE

ITENAÑOS BULKHEAD SLO

Scaling Up FIRO with the Screening Process

Purpose: FIRO Steering Committees have conducted analyses at several pilot sites that have led to successful Water Control Manual exemptions. The purpose of creating a FIRO Screening Process is to scale up the implementation of FIRO, while maintaining the same level of rigor and quality to the process as demonstrated at the original pilot sites. This will enable FIRO benefits to be accessible at more reservoir sites.

Goal: Develop a broadly usable tool for water management agencies to determine sites where FIRO may be appropriate, including evaluating entire portfolios of reservoirs. Produce an adaptable, easy-to-use process that empowers more local ownership over FIRO implementation.

Scaling Up FIRO with the Screening Process

How difficult would it be to implement FIRO at sites across USACE?

Which reservoirs in the USACE portfolio are not candidates for FIRO under current conditions?

Where is there stakeholder interest in assessing FIRO?

Where do we need additional research (atmospheric, hydrologic) in order to consider FIRO?

Dimensions of the FIRO Screening Process

Atmosp	Hydron theric	Hydra Ogic	Environn ulic	Bene, hental	Coopera fit	Polic	Site-spe	acific
	How variable is precipitation in the watershed?	What is the watershed response to precipitation?	Does this dam have a controlled outlet?	Are there environmental limits to inundation in the reservoir area (e.g., vireo nesting dates)?	How are the reservoir functions (drinking water, hydropower) affected by FIRO operations?	Are there interested parties willing to agree on a set of goals and metrics at the site?	Who has jurisdiction over the reservoir operations?	What challenges or opportunities are unique to this site?
	How predictable is extreme precipitation? With what lead times and reliability?	How predictable or well-modeled is the hydrologic response of the watershed?	What is the downstream channel capacity flow rate?	Are there sensitive species in the downstream channel which require certain release flows?	Is there community use of the reservoir that might be impacted by changing pool elevation (e.g., campgrounds)?	Can the stakeholder organizations dedicate staff to participate in the Viability Assessment process?	ls there potential for a Water Control Manual update for the site?	What else needs to be considered specifically for this site?

If site passes initial screening by an expert panel

> If site has an overall medium or high suitability rank and stakeholders decide to proceed

> > If FIRO experts determine site is suitable and stakeholders decide to proceed

Stage A: Initial Screening

"Weed Out" Criteria High-level, expert panel assessment

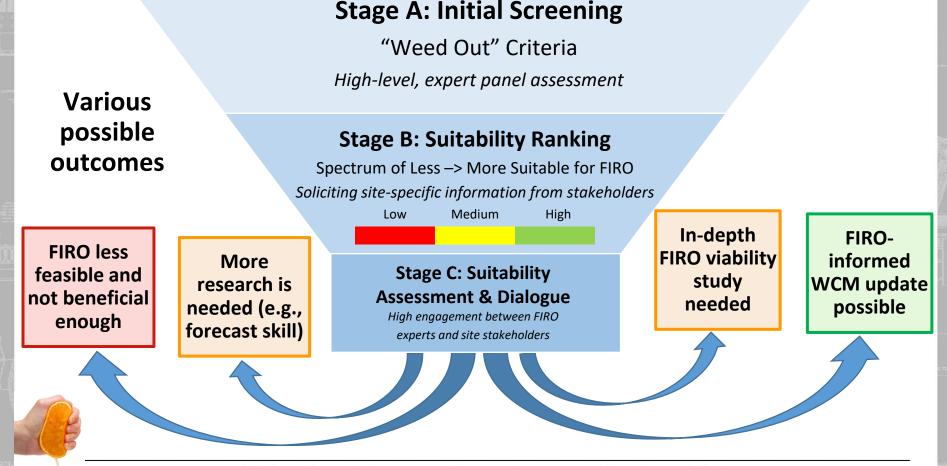
Stage B: Suitability Ranking

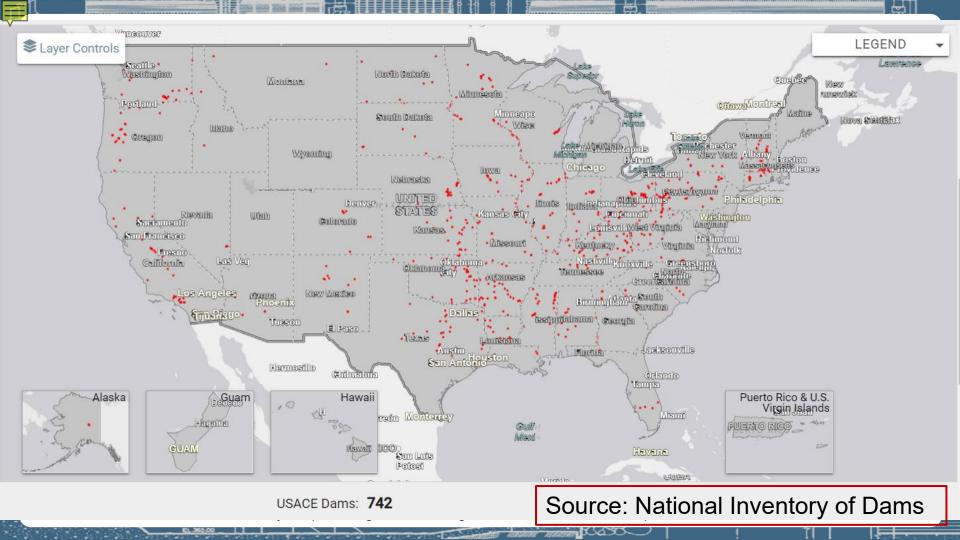
Spectrum of Less -> More Suitable for FIRO Soliciting site-specific information from stakeholders

Stage C: Suitability

Assessment & Dialogue High engagement between FIRO

experts and site stakeholders


FIRO


Viability Assessment High

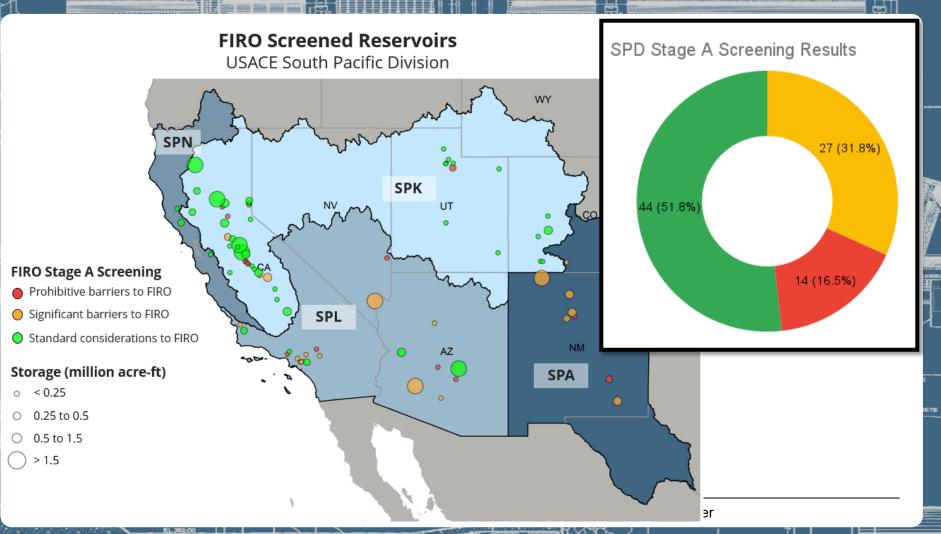
Medium

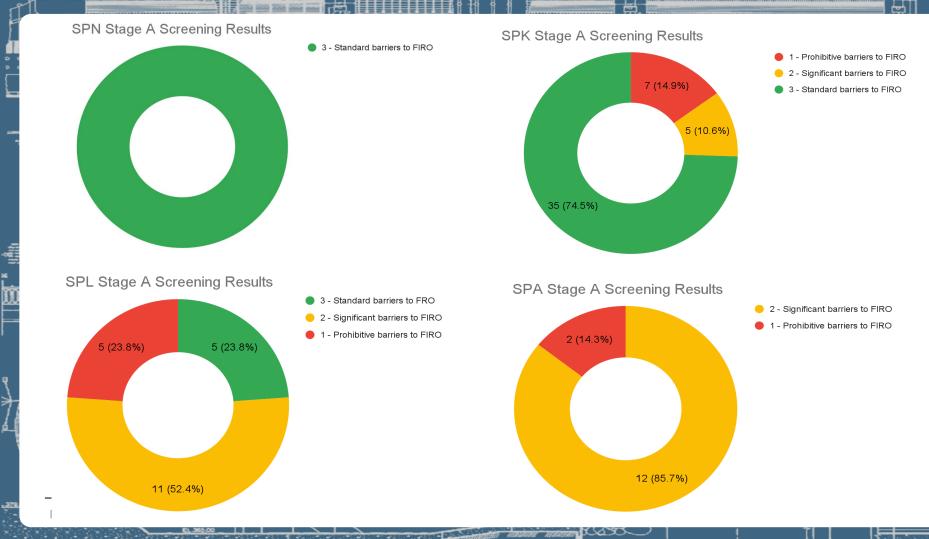
Low

Phase II: Test on South Pacific Div. Phase III: Screen full USACE portfolio

FIRO Phase II: Develop and beta test this process with the SPD reservoir portfolio

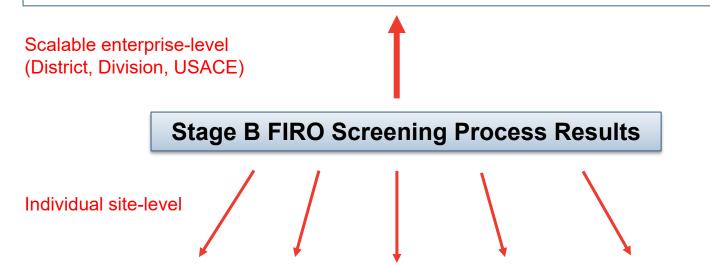
- 85 sites
- High level of FIRO familiarity
- AR-dominated extreme precipitation, but not exclusively


BUILDING STRONG®

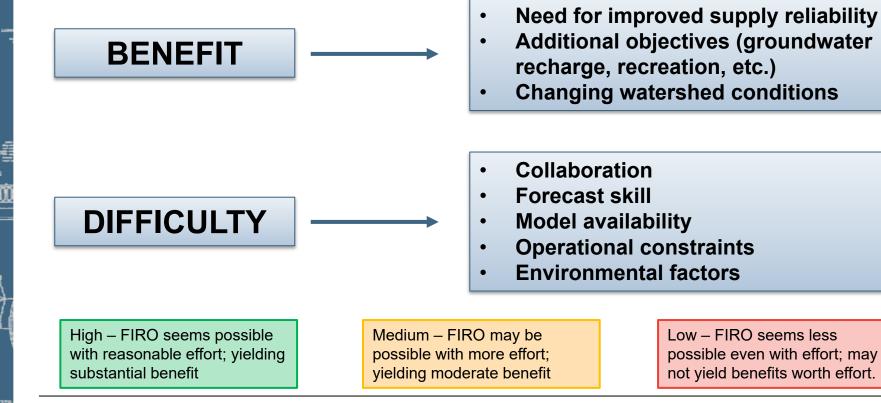

Phase II Timeline

Process Developme	ent		Stage A: Developed process	Stage B: MCDA score input (spr	•		
Screening Process Framework inalized	Developed Fir		to score results ge B: Formed subgroup; fting instrument	Stage B: I instrumen		Stage A/B: U instruments v beta feedbac	vith
September	November	January	March	Мау	July	September	
2021	SPD agreed to serve as beta testers for the Screening Process	2022 Stage A: Met with SPD dist contacts to in process 1/10/	rict SPD with res tro in April	ovided fo	tage B: SPD istricts submit in r test reservoirs uring July	·	and es with t
Screening Process Beta Test			Stage A: SPD districts submitted completed instruments in March	Stage B: SPD Districts select 2-3 reservoirs and receive Stage B Questionnaire in June		Stage B: Screening Process team scores 8-10 Stage B questionnaires in August and Sept.	

Stage A Screening Criteria


FIRO Stage A Screening Classification	Score	Q#	Reason
Prohibitive barriers to FIRO	1	Q1	No controlled outlet
			(including dams that cannot hold an impoundment)
		Q2	No Water Control Plan
Significant barriers to FIRO	2	Q3	Legal or technical barriers (including DSAC 1)
		Q4	No forecasted inflow
		Q5	Active litigation
		Q6	Stakeholder engagement barriers (score of 1 or 2)
Standard considerations to FIRO	3		Part of a system of reservoirs
			Section 7 Dam
			DSAC 2 or higher
			None of the barriers identified above

Stage B Outcomes


Enterprise-level ranking of FIRO suitability across a portfolio of sites; can inform investments and prioritization of FIRO studies/WCM updates

Individual reservoir rating reports on FIRO suitability at a site; will inform Stage C Dialogues with site stakeholders, decision whether to pursue FIRO, and PVA

BUILDING STRONG

What is Stage B FIRO Suitability?

BUILDING STRONG®

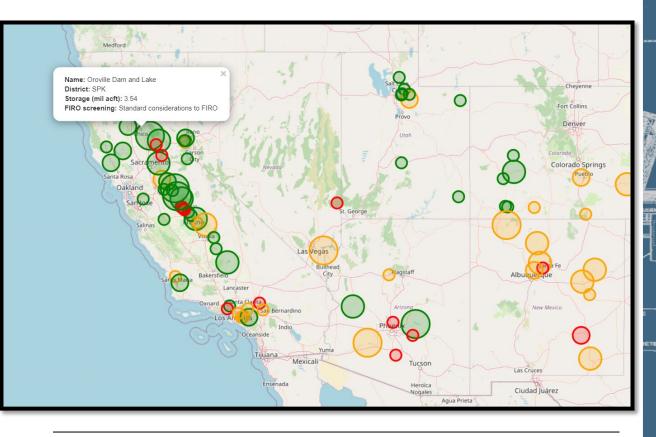
Los Angeles District (SPL)

- Hansen Dam
- Seven Oaks Dam
- Twitchell Dam

San Francisco District (SPN)

- Lake Del Valle Dam
- Lake Mendocino

Albuquerque District (SPA)


- Pueblo Dam
- John Martin Dam

Sacramento District (SPK)

- New Hogan
- Truckee
- Black Butte
- Terminus
- Hidden
- Pine Flat

BUILDING STRONG

Stage B Selections

Would FIRO be a benefit at this site? [Assessing need]

Conducting a full FIRO Viability Assessment and subsequent update to a Water Control Manual is a significant undertaking that requires technical expertise and work across many fields, and intensive communication and collaboration. FIRO is not guaranteed to be found viable at every site. It is important to weigh the potential benefits of FIRO against the scope of this effort. These questions assess the potential scale of benefit from FIRO for a site.

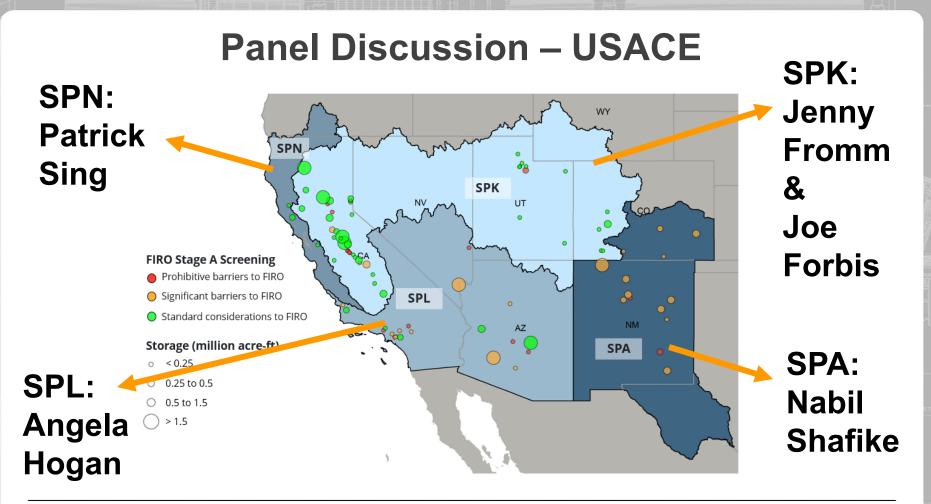
 What are the authorized purposes of the project? (As described in the authorizing documents such as federal authorization (USACE, USBR, state water entity authorization, Federal Energy Regulatory Commission).

- 2. Do site stakeholders have a very strong need to address a water supply availability or a flood protection issue?
 - For example, are you failing to meet one or more water supply objectives or expecting to fall short in the near future? How often are you not meeting/expecting to not meet this objective? Is this need reflected in strategic/master planning, or other active projects?

Atmospheric/Hydrologic models and forecasting

FIRO requires that inflow forecasts are skillful enough at required lead times for operational needs at a specific site. Assessments of atmospheric forecast skill for this Screening Process are conducted by the Center for Western Weather and Water Extremes at Scripps Institution of Oceanography. These questions assess the ability to use forecasts at this site, and the operational forecast lead time requirements.

- Do you have access to the following data? Please describe the specifications and sources.
 - Archived historical and/or hindcast inflows that are representative of those used in reservoir release decisions (please not if these are for regulated and/or unregulated streams)


 Archived historical and/or hindcast precipitation forecasts and associated observations that are representative of those used in reservoir release decisions

15. Are you using forecasts now for context in decision-making? Please describe the source of these forecasts and how you use them.

Hydraulics/Operations

Successful application of FIRO requires changes to the site Water Control Manual, and supporting decision support tools to use forecasts in release decisions. These questions assess the availability of hydraulic operations characteristics that indicate suitability for FIRO.

- 21. In what year was the Water Control Manual (WCM) last updated in a way that impacted water control operations?
- 22. Is a WCM update currently in process, funded, or planned within the next five years?
- 23. What is the channel capacity (cfs) downstream of the dam?
- 24. What is the maximum volume (ac-ft) between Bottom of Flood Control and Gross Pool (rainflood)?
- 25. Under current operations, what percent encroachment in the flood control space must be reached before the dam operator releases at full downstream channel capacity?
- 26. Is there local stakeholder willingness to allow for flood control releases from the water conservation space for FIRO?

