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1 Lake Mendocino Operations Model Inputs and Constraints 

The Lake Mendocino Operations (LMO) model defines data inputs for all primary 

sources and sinks of the system water balance to simulate current conditions of Lake 

Mendocino and the Upper Russian River. These data inputs include ensemble streamflow 

hindcasts, observed and forecasted unimpaired reach gains from natural runoff, water 

imports from the Eel River through the Potter Valley Project, and reach water loss due to 

consumption and other sinks. The LMO model also incorporates primary system 

constraints that govern actual operations of the reservoir. 

1.1 HEFS Hindcast 

One of the primary inputs to the LMO model for the simulation of Ensemble Forecast 

Operations (EFO) is the ensemble streamflow hindcasts from the National Weather 

Service (NWS) Hydrologic Ensemble Forecast System (HEFS). HEFS leverages the 

models and states used to generate single-value forecasts and forces them with an 

ensemble of equally likely precipitation and temperature scenarios modulated by the 

current weather forecast, a statistically calibrated relationship between the precipitation 

and temperature forecast (model or forecaster driven) and historical observed 

precipitation and temperature for the basin of interest. The fundamental science behind 

this approach can be found in Demargne et.al, 2012. An overview of the HEFS process 

and workflow is provided in Figure 1.  
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Figure 1. Overview of HEFS workflow. 

The NWS HEFS has been operational for the Russian River basin since 2012, which 

only provides a limited period to evaluate forecast based alternatives. To provide a more 

comprehensive period for analysis, retrospective ensemble forecasts (i.e., hindcasts) of 

Lake Mendocino inflow and the downstream watersheds were generated by the California 

Nevada River Forecast Center (CNRFC) using the HEFS model over a 26-year period. 

To develop these hindcasts, the CNRFC hydrology models were forced with the 

Meteorological Ensemble Forecast Processor (precipitation and temperature) from the 

National Centers for Environmental Prediction (NCEP) Global Ensemble Forecast 

System (GEFS Version 10) 2012 reforecast data set (Hamill et al, 2013). The full hindcast 

process creates an hourly, 61-member flow forecast from 1985 to 2010, with a forecast 

horizon of 15 days.  

The hydrology and atmospheric models used in the hindcast process are as consistent 

as possible with what is used operationally (Hamill et al., 2013); however, the hindcasting 

procedure is automated, so it does not fully capture the forecast process used by the 
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CNRFC in real-time operations. For example, in real-time operations, a hydrologist may 

make minor adjustments to model states and/or suspect observations to ensure proper 

simulation of observed discharge up through the current time when the forecast is issued. 

These adjustments are often iterative until the forecaster is satisfied that the modeled 

location is functioning properly and that the single-value forecasts, given the forecast 

meteorology, are credible and appropriate. Interestingly, the forecaster only sees the 

single-value forecast several days into the future and not the full ensemble distribution 

generated by the follow-on ensemble process. Tuning of model states and observations 

given the ensemble forecast distribution is not currently practiced at the CNRFC. In this 

respect, the hindcast dataset is consistent with real-time operations. The hindcasts are 

not, however, an exact representation of operational methods, but are a consistent, 

realistic, and likely skill-conservative sample of forecasts for testing alternative 

reoperation strategies.   

1.2 Unimpaired Flows 

The CNRFC developed historical unimpaired flow hydrology of the Russian River from 

1985 to 2010. Unimpaired flows are estimates of reach gains from actual precipitation 

runoff, which are unaffected by man-made influences such as water demands or reservoir 

operations. These data were originally developed to assess forecast quality and reliability; 

however, they have been applied in this study to simulate operational alternatives of Lake 

Mendocino from 1985 to 2010. For example, to simulate EFO, at each daily time step the 

LMO model uses the hindcast (described above) to forecast future conditions and 

calculate a flood release, but once the release has been calculated, simulated storage 

and flows are calculated using the historical unimpaired flows.  

Unimpaired inflow into Lake Mendocino were estimated by the CNRFC using water 

balance methods with observed inflows from the US Army Corps of Engineers 

Sacramento District (USACE-SPK) and observed diversions into the East Fork Russian 

River from the Potter Valley Project to estimate inflow from natural runoff. Historical local 

unimpaired flows for the remaining model junctions (West Fork, Hopland, Cloverdale and 

Healdsburg) were simulated by running the CNRFC hydrology model for the Russian 
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River continuously with historical observed weather conditions (temperature and 

precipitation).  

1.3 Potter Valley Project Diversions 

In the fall of 2006, operations of the Potter Valley Project changed substantially as a 

result of a 2004 Federal Energy Regulatory Commission license amendment for the 

Potter Valley Project (FERC, 2004). Consequently, historical diversions from 1985 to 

2006 would not be representative of current operations of the Potter Valley Project. 

Modeled Potter Valley Project diversions were developed to simulate current, post-2006 

regulation. The estimated Potter Valley Project diversions from the Eel River Model are 

provided as inputs into the LMO model at the Potter Valley Project model junction.   

1.4 Reach Losses 

The LMO model accounts for system losses at four model junctions: Lake Mendocino, 

Hopland, Cloverdale, and Healdsburg. Model junction losses applied in the model consist 

of water balance derived losses and metered municipal and industrial (M&I) diversions. 

Water balance losses, which account for all water sinks including riparian 

evapotranspiration, evaporation, surface water/groundwater interactions, and 

consumptive use from agricultural diversions and M&I diversions, were calculated for the 

dry season months from May to October. During the remaining months, November 

through April, it is assumed that water loss from most sinks declines significantly. 

Therefore, for these months, it is assumed that M&I loss estimates are accurate estimates 

of the total reach depletions. 

The unimpaired flow for most reaches typically diminishes to low or no flow conditions 

by early to mid-May in dry years and June in wetter years. During the wet season 

unimpaired flows are large, and the magnitude of these flows is significantly greater than 

the magnitude of losses. Because of these differences, gage error and unimpaired flow 

estimation error can be significant compared with the magnitude of losses and obscure a 

reliable calculation of water balance derived losses. Additionally, in the springtime of 

wetter years, agricultural water use is very low so that corresponding stream losses are 

also low, making water balance loss calculations unreliable. For these reasons, water 
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balance losses are only calculated for the months of May through October for 

incorporation into the total loss time series. 

Water balance losses were calculated for water years 2000 through 2010 using daily 

observed diversions from the Potter Valley Project, releases from Lake Mendocino, flow 

data from USGS gages, and modeled unimpaired flow from the CNRFC.  Daily water 

balance losses were calculated at each model junction using the following equation: 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 =  𝑄𝑄𝑈𝑈𝑈𝑈𝑈𝑈𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑈𝑈 −  𝑄𝑄𝐷𝐷𝐷𝐷𝐷𝐷𝑊𝑊𝑈𝑈𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑈𝑈  + 𝑄𝑄𝑈𝑈𝑊𝑊𝑈𝑈𝑈𝑈𝑈𝑈𝑊𝑊𝑈𝑈𝑊𝑊𝑊𝑊𝑈𝑈  (1) 

Where QUpstream and QDownstream are the observed flows at the USGS gages 

corresponding to the model junctions, and QUnimpaired is the CNRFC modeled unimpaired 

flow (as previously described) in the reach between the upstream and downstream model 

junctions.   

Losses due to M&I diversions were estimated from metered diversion data collected 

from 11 public water systems in the Upper Russian River basin for the years 2009 through 

2013. Total monthly M&I diversions were calculated for each reach using pumping data 

for the points of diversions located in that reach. Monthly average metered diversions 

were estimated for the months of April through November. 

Annual loss hydrographs were calculated for the Lake Mendocino, Hopland, 

Cloverdale and Healdsburg model junctions. The average monthly losses are shown for 

the Hopland model junction in Figure 2. The annual monthly losses were applied in the 

model by equally distributing the monthly average loss to each day of the month to 

develop daily loss estimates. 
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Figure 2. Monthly loss pattern for Hopland model junction. 

Losses due to reservoir surface evaporation were accounted for in the model using 

an annually repeating pattern of monthly evaporation rates. The monthly evaporation 

rates were calculated based on monthly mean pan evaporation estimates and the monthly 

evaporation coefficients provided in the Lake Mendocino Water Control Manual (WCM) 

(USACE, 2003). Daily reservoir surface water evaporation is simulated in the LMO model 

by taking the product of simulated water surface area of Lake Mendocino by the monthly 

evaporation rate. 

1.5 Lake Mendocino Release Constraints 

To simulate releases from Lake Mendocino the LMO model incorporates the primary 

system constraints that govern actual operations of the reservoir. These constraints 

include physical capacity of the outlet structures, and release rules defined for flood 

control and water supply operations. 

The controlled outlet of Lake Mendocino consists of a single conduit approximately 

720 feet long and 11 feet in diameter. There are three pairs of hydraulically operated 

release gates, with each pair consisting of a service gate and an emergency gate. 

Maximum release capacity of the controlled outlet is approximately 7,500 cubic feet per 

second (cfs) when the water surface elevation is within the Emergency Release Pool 
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(above elevation 773 feet mean sea level). The controlled outlet rating curve defined in 

the WCM (USACE, 2003) is shown in Figure 3. 

 
Figure 3. Lake Mendocino controlled outlet rating curve. 

The flood release schedules defined in the WCM (USACE, 2003) set the maximum 

release rates from the reservoir’s controlled outlet structure for different reservoir storage 

levels. The flood release schedules, as shown in Table 1, were defined in the LMO model 

to constrain releases during simulated flood operations. 

Table 1. Lake Mendocino maximum flood release schedule. 
Flood Release Elevation  Storage Max Release 
Schedule (feet) (ac-ft) (cfs) 
Schedules 1 and 2 737.5 to 755 68,400 to 98,700 4,000 
Schedule 3 755 to 771 98700 to 128,100 6,400 

 

The emergency spillway crest for Lake Mendocino is at storage level 116,500 acre-

feet (ac-ft). The emergency spillway does not have a release control structure, so 

emergency spillway releases are uncontrolled. When simulated storage levels are above 

the crest of the emergency spillway, the LMO model simulates spillway releases 

according to the spillway rating curve defined in the WCM (see Figure 4). The maximum 

rated capacity of the spillway (top of dam elevation water surface elevation) is 47,300 cfs. 
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Figure 4. Lake Mendocino uncontrolled spillway rating curve. 

When simulated storage in Lake Mendocino is within the conservation pool for the 

Existing Operations (EO) alternative or forecasted risk is below the risk tolerance curve 

for EFO, the LMO model simulates releases according to the constraints defined for water 

supply operations. To simulate water supply operations conducted by Sonoma Water, the 

LMO model simulates releases consistent with current operations. These constraints 

include requirements defined in Sonoma Water’s water rights permits (Sonoma Water, 

July 2016) and a 2008 Biological Opinion (BiOp) issued by the National Oceanic and 

Atmospheric Administration’s (NOAA’s) National Marine Fisheries Service (NMFS, 2008). 

The model simulates releases during water supply operations by calculating the required 

release to supply all downstream reach losses, including a buffer release, to ensure 

minimum instream flows are met at all downstream model junctions (Hopland, Cloverdale 

and Healdsburg).  

The primary model assumptions for simulating water supply release decisions for Lake 

Mendocino include the hydrologic index and the Upper Russian River minimum instream 

flow requirements. The hydrologic index is a metric that is defined in Sonoma Water’s 

water rights permits (Sonoma Water, 2016), which sets the water supply condition and 

minimum instream flow schedules for the Russian River. The water supply condition 

(Normal, Dry or Critical) is determined through an evaluation of water year cumulative 

inflow into Lake Pillsbury (located on the Eel River). The water supply condition is used 

to set the minimum instream flow schedules as shown in Table 2. The Upper Russian 
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River minimum instream flow requirements vary from 185 cfs for the wettest (Normal) 

Water Supply Conditions to 25 cfs for the driest (Critical) water supply conditions.  

Table 2. Upper Russian River minimum instream flow schedules. 

 

The water supply conditions used in the LMO model were calculated from historical 

Lake Pillsbury inflow from 1985 to 2010, which are shown in Figure 5. Under Normal 

water supply conditions from June through December, Lake Pillsbury and Lake 

Mendocino are evaluated for low storage levels to potentially trigger reduced flow 

schedules (Normal-Dry Spring 1 or Normal-Dry Spring 2) as shown in Table 2. 

 
Figure 5. Russian River System Water Supply Conditions from 1985 to 2010 calculated from observed 
Lake Pillsbury inflows. 

Operationally, additional buffer releases are made from Lake Mendocino to account 

for the dynamic variability of flows downstream of the reservoir and to help prevent flows 

from dropping below the downstream minimum instream flow requirements. These buffer 

releases are accounted for in the model through constant values which are added to 

simulated releases. The buffer releases applied in the model vary between 9 and 20 cfs 
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depending on the month and Water Supply Condition and were developed through an 

analysis of observed releases and river flows from 2000 to 2013. 

Rapid changes in release rate from Lake Mendocino can result in rapid changes in 

stage downstream, which can potentially strand juvenile salmonids on gravel bar surfaces 

or in off-channel habitats. Juvenile salmonids that are stranded in off-channel habitat or 

in cobble substrates are subject to increased mortality (NMFS, 2008). Increasing and 

decreasing rate of change release criteria (ramping rates) are defined in the WCM and a 

2016 letter to the USACE from NMFS in an effort to limit impacts to fish downstream. The 

LMO model incorporates these constraints in the simulation of releases from Lake 

Mendocino, which can be seen in Table 3. 

Table 3. Lake Mendocino release rate of change guidance. 

 

2 Assessment of the HEFS Hindcast Reliability 

The NWS has completed verification studies of the HEFS meteorological forcings of 

temperature and precipitation (Brown et al., 2014a) as well as streamflow forecasts 

(Brown et al., 2014b), but the Russian River basin was not included as one of the 

verification sites. Additionally, the CNRFC did not complete a validation study associated 

with the Russian River hindcast dataset. However, to support the findings in this study, 

evaluations of the Lake Mendocino inflow hindcast have been completed to assess the 

reliability for the purposes of flood control management of Lake Mendocino.  

One assessment of reliability was to evaluate how well the central tendency and 

spread of the hindcasted Lake Mendocino inflow ensemble match the central tendency 
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and spread of observed Lake Mendocino inflows. Figure 6 shows the distributions of 3-

day inflow volumes for the 5 to 7-day and 9 to 11-day lead time hindcasts conditioned to 

the forecast-ensemble median and 95% quantiles. Results from this figure indicate 

(panels a and c) good skill of the ensemble median forecast, and (panels b and d) the 

HEFS ensemble spread provides a good representation of the forecast uncertainty 

(probability distribution function). 

 
Figure 6 Observed and forecasted November through April 3-day Lake Mendocino inflow volume mean for 
5 to 7-day (panels a and b) and 9 to 11-day (panels c and d) lead times for median and 95 percentile 
forecasts conditioned on the ensemble median. 

Figure 7 provides a summary of the same kinds of results for multiple quantiles (25, 

50, 75, 90 and 95 percentile) for the 5 to 7-day and 9 to 11-day lead times. It displays the 

ratio of observed to forecast quantiles (i.e., the 95% observed values [y-axis] divided by 

the 95% ensemble values [x-axis] from panel b Figure 6, as a function of the forecast 

magnitude). The grey bars indicate the band where the ratios are within 10% (darker grey) 
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and 20% (lighter grey) of perfect. Results of this figure show that much of the range of 

flows for the 5 to 7-day and 9 to 11-day lead times fall within 20% of perfect. However, 

the lower range of flow forecasts (<2,500 ac-ft in 3-days) and quantiles (<75%) are biased 

to under forecast, and the lower to middle range of forecasts (0 to 10,000 ac-ft in 3-days) 

for the upper quantile of observation (90 and 95%) show a tendency to over forecast. 

Most importantly for the flood-risk management issues that most often dictate the EFO 

release decisions, the middle to upper range of forecasts (>10,000 ac-ft in 3-days) mostly 

fall within the light grey shaded region, indicating forecasts that lie roughly within 20% of 

perfect, but show a general bias toward under forecasting. 

 
Figure 7 Ratio of observed to forecasted 3-day Lake Mendocino inflow volumes for 25, 50, 75 and 95 
percentiles for 5.5 (panel a) and 9.5-day (panel b) lead times. 

Rank histograms are a commonly used tool to evaluate the statistical reliability (Type 

I conditional bias) of ensemble forecast systems (e.g., Hamill and Colucci 1997, 1998; 

Delle Monache et al., 2013; Elmore, 2005), and according to Hamill (2000), they are 

useful for determining the reliability of ensemble forecasts and for diagnosing errors in its 

mean and spread. As an additional assessment of hindcast reliability, cumulative rank 

frequency plots (provided in Figure 8), which are similar to rank histograms, were 

developed using the ensemble hindcast and observed Lake Mendocino 3-day inflow 

volumes from 1985 to 2010 for the months of December through March, which are the 

months that EFO most heavily relies on forecasts to inform release decisions.  
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To calculate the rank frequency, each daily observed inflow volume is ranked by the 

order in which it falls within the range of the ensemble spread. Since there are 61 

ensemble members (degrees of freedom) in the hindcast, there are 62 possible ranks 

with ranks 1 and 62 accounting for observations that fall either less than (rank 1) or greater 

than (rank 62) the ensemble range. The calculated frequency of each rank is displayed 

in the plots shown as the monotonic accumulation ordered by increasing rank. The 

frequency plots were generated for subsets of the hindcast for 5 different forecast lead 

times (1 to 3, 4 to 6, 7 to 9, 10 to 12, and 13 to 15 days) shown as rows in Figure 8. Bellier 

et al. (2017) showed that stratification of forecast-observation pairs can be used to learn 

how forecasts behave under specific conditions. Stratification was applied here to sample 

different quantile ranges (shown as columns in the figure), which are conditioned by the 

ensemble median. The first column of frequency plots shows the entire range of hindcasts 

(0 to 100%), while columns 2 through 4 stratify the hindcasts into ranges of quantiles (50 

to 75, 75 to 90 and 90 to 100%). The upper and lower volumes that were used to condition 

each stratified subset are provided in the title of each subplot. 
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Figure 8 Cumulative rank frequency diagrams of December through March Lake Mendocino 3-day inflow 
volume for 5 lead times (as rows) and 4 stratified subsets (as columns) conditioned on the ensemble 
median; upper and lower bound volumes (in ac-ft) used to stratify each subset are included in the titles of 
each subplot. 

An ideal forecast would produce ensemble members that are equally probable, which 

is presented in the frequency plots as the red dashed lines, which show a straight line 

with a slope equal to the expected equal probability (1 divided by the 62 possible ranks). 

These results show a strong tendency for the observation to fall in the upper tail of the 

ensemble distribution (higher ranks) of the hindcast for 1 through 6 days of lead time, as 
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evidenced by the hindcast cumulative frequency falling well below the idealized 

cumulative frequency for most of the distribution and then increasing significantly for the 

top ranks, especially for the 0 to 100%, 50 to 75% and the 75 to 90% stratified subsets. 

Forecast reliability improves for the 7 to 15-day lead times with decreasing bias; however, 

there is still an asymmetric pattern, which implies that the central tendency of the 

forecasts is systematically too low (i.e., an under forecasting issue). Forecast reliability 

improves for all lead times for the 90 to 100% subset. The 1 to 3-day lead time of this 

subset shows possible issues of under dispersion, with higher frequencies occurring in 

the upper and lower tails of the ensemble distribution. The 4 to 6-day lead time of the 90 

to 100% subset shows the best reliability with the cumulative frequency of the hindcast 

closely matching the idealized cumulative frequency. 

To test the assumption of equally probable ensemble members, a chi-square 

goodness of fit test was completed to evaluate whether the observed frequencies of the 

hindcast are statistically different from the expected frequencies of an idealized forecast 

with equally probable ensemble members. The sample subsets for each of the cumulative 

rank frequency plots (rows of lead time and columns of quantile ranges) were stratified to 

meet the conservatively defined required sample size of the chi-square test to provide a 

minimum expected count of at least 5 for each bin. The minimum subset sample size is 

312 for the 90 to 100% ranges, which exceeds the required amount of 310 for a 61-

member ensemble. The results of the chi-square test are included as insets in each of 

the cumulative frequency plots with the associated p-value, which is derived from a 

theoretical chi-square distribution with 61 degrees of freedom. 

Results of the chi-square test (a lower result is better and 0 is a perfect score) show 

that forecast reliability consistently improves with increasing stratified quantile ranges of 

the ensemble median, showing the best reliability for the highest sample range of 90 to 

100%. Assuming a significance level of 0.05, most of the subsets show p-values below 

the significance level and therefore do not meet the criteria of equally probable ensemble 

members. However, the 90 to 100% subset for forecast lead times from 4 to 15-days 

show higher p-values than the significance level and therefore meet criteria of reliability 

for equal probability.  
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In summary, these evaluations have demonstrated a systematic bias of the hindcast 

to under forecast conditions for the months December through March, which are the 

primary months that EFO simulates flood control release decisions. Bias decreases with 

increasing days of lead time and for the higher range of forecasts when conditioned on 

the ensemble median. Based on results of a chi-square test, the hindcast shows the 

greatest reliability for the 90 to100% stratified subset, especially for lead times of 4 to 15 

days which met the assumption of reliability assuming a significance level of 0.05. It 

should be noted that the stratification volume ranges for the 90 to 100% subsets includes 

the range of hindcasts (>10,000 ac-ft in 3-days) that would inform many of the flood 

control pre-release decisions of EFO.  

According to Elmore (2005), the chi-square test is insensitive to the nature of the 

departure from the null distribution, and cannot distinguish between a noisy departure 

and an ordered systematic departure. However, given the large systematic bias present 

in the hindcast, a visual inspection of the distribution was adequate to qualify the nature 

of the departure. Elmore (2005) and Joliffe and Primo (2007) have identified other tests 

such as the Cramer-von Mises family of statistics, which are better suited for evaluating 

rank histograms. Future research could use these methods to evaluate the hindcasts of 

Lake Mendocino and other forecast locations in the Russian River watershed and 

evaluate the possibility of statistical post processing of the HEFS forecasts to reduce bias. 

3 Testing of the Lake Mendocino Operations Model 

A historical scenario was developed from 2000 to 2010, the period for which historical 

operational data was readily accessible for the purpose of testing the LMO model. This 

scenario simulated historical hydrology and operational constraints for comparison to 

observed storage levels and system flows to evaluate the accuracy of the primary model 

assumptions such as the unimpaired flows, estimated reach losses, and reservoir release 

constraints. Several hydrologic and reservoir operation assumptions were modified for 

this scenario because they were not stationary during the testing period or consistent with 

current operations.  
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The modeled Potter Valley Project diversions used in the LMO model for the Forecast 

Informed Reservoir Operations (FIRO) alternatives analysis are designed to simulate 

current operations, post-2006 (as previously discussed). This dataset was not used for 

the test scenario, because it would not accurately simulate Potter Valley Project 

operations from 2000 to 2006. For this reason, observed Potter Valley Project releases 

were used for the test scenario from 2000 to 2010. 

The guide curve for Lake Mendocino was not consistent for all of the years of the 

testing period. Prior to 2007, the USACE operated using a different guide curve with a 

maximum conservation storage of 86,400 ac-ft, and actual storage levels were observed 

to reach up to 90,000 ac-ft. To improve simulation of historical flood control operations, 

the test scenario uses a guide curve which varies over the simulation period with a 

maximum conservation storage of 90,000 ac-ft from 2000 to 2006 and 111,000 ac-ft 

(current guide curve maximum storage level) from 2007 to 2010. 

Historical water supply operations of the Russian River System from 2000 to 2010 

varied due to changes in regulatory compliance such as temporary emergency actions 

taken for conservation of water supply and/or changes in minimum flow requirements to 

comply with the BiOp. To capture the operational variability during the testing period, 

actual historical minimum instream flow requirements were used for the test scenario in 

place of the simulated minimum instream flow requirements used for the analysis of 

alternatives. 

Results of simulated Lake Mendocino storage for the test scenario were compared to 

observed storage from 2000 to 2010, as shown in Figure 9. Simulated storage levels 

closely follow observed storage levels; however, water years 2000 to 2003, 2008 and 

2010 show lower peak simulated storage than observed storage. The higher observed 

storage for these years is the result of reservoir operators allowing storage levels to 

encroach into the Lake Mendocino flood control pool that was not accounted for in the 

model. 
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Figure 9. Simulated and observed Lake Mendocino storage (ac-ft) levels for 2000-2010. 

Results of the daily simulated flows at the Hopland model junction from the test 

scenario were compared to observed flows at the U.S. Geologic Survey (USGS) 

Russian River near Hopland Gage (USGS 111462500) from 2000 to 2010. A scatter 

plot of simulated flows versus observed Hopland Gage flows is provided in Figure 10. 

These results show a least-squares linear regression fit with a slope of approximately 

0.9 and an R2 of 0.89. Some of the unexplained variation in the simulated flows is the 

result of the timing of simulated releases and flow travel times not precisely matching 

observed conditions.   
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Figure 10. Observed versus simulated Hopland gage flow from 2000 to 2010. 

A hydrograph of Hopland junction flow for the 2006 New Year’s Day event is shown 

in Figure 11 which is the largest in the test scenario period, and the fourth largest 

observed flow since the gage was installed in 1940. Observed flows reach a peak flow 

of 24,100 cfs on New Year’s Day. Simulated flows fall below observed conditions for 

this event reaching a peak flow of 18,600 cfs, but closely follow observed flows for the 

days leading up to and following the peak flow event. The difference in peak flow is 

largely attributable to an under-simulation of Hopland unimpaired flows provided by the 

CNRFC. 



 
 

20 
 

 
Figure 11. Simulated and Observed flows New Year’s Day 2006 flood event for the Hopland model junction 
for the verification scenario. 

Results of the simulated flows at the Healdsburg model junction were also compared 

to observed flows at the USGS Russian River near Healdsburg Gage (USGS 1146400) 

from 2000 to 2010. A scatter plot of simulated flows versus observed flows is provided 

in Figure 12. These results show a least-squares linear regression with a slope of 

approximately 1.02 and an R2 of 0.95.  
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Figure 12. Observed versus simulated Healdsburg gage flow from 2000 to 2010. 

The hydrograph of Healdsburg junction flow for the New Year’s Day event is shown 

in Figure 13. Observed flows reach a peak flow of 56,000 cfs on New Year’s Day.  

Simulated flows peak at a level above observed conditions for this event, reaching a 

peak flow of 65,400 cfs. As with the upstream Hopland junction, simulated flows trend 

very well with observed flows for the days leading up to and following the peak flow 

event. 
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Figure 13. New Year’s Day 2006 flood event Simulated and Observed flows for the Healdsburg model 
junction for the verification scenario. 

Results of the test scenario were also evaluated against observed conditions using 

the Nash-Sutcliffe Efficiency (NSE) (Nash, 1970) and volumetric efficiency (VE) (Criss & 

Winston, 2008) performance metrics for all of the model junctions.  Results of this 

assessment are summarized in Table 4. These results indicate good agreement 

between simulated and observed conditions for the test scenario period, 2000 to 2010.  

Table 4. Model test performance metrics results. 
Model Junction NSE VE 

Lake Mendocino Storage 
0.9

0 
0.9

3 

Hopland gage flow 
0.8

9 
0.7

6 

Cloverdale gage flow 
0.9

3 
0.7

9 

Healdsburg gage flow 
0.9

5 
0.8

1 
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Based on the results of the test scenario, we have high confidence that the model 

input data are of adequate quality to support the comparative analysis of alternatives 

completed for this study and to discriminate impacts between reservoir management 

alternatives. 

4 Ensemble Forecast Operations Flowchart 

A flowchart of the computational steps of the Ensemble Forecast Operations (EFO) 

alternative for calculating flood control releases can be seen in Figure 14. 
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Figure 14. Flowchart for calculating flood control releases for EFO. 
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5 Development of the Risk Tolerance Curve 

The EFO alternative utilizes ensemble streamflow predictions to forecast risk of 

exceeding a reservoir storage threshold. A central component of this methodology is a 

risk tolerance curve that is used to formulate forecasted release schedules for Lake 

Mendocino. The risk tolerance values for the 15 forecast time steps are not independent 

from each other. Therefore, given 61 possible risk tolerance values (61 ensemble 

members) at each time step, there are 1561 (approximately 5.5 x 1071) possible risk 

tolerance curves. Given the very large number of possibilities, a brute force method for 

optimization would be impractical. Additionally, many of the possible combinations of 

values that would be evaluated in a brute force analysis would not be plausible curve 

shapes, such as curves that vary erratically from one forecast timestep to the next. 

Therefore, for this study, a methodology was developed that evaluates a number of 

plausible curve shapes to select a curve that could be used to support a proof-of-concept 

simulation of the EFO methodology, but likely not the level of optimization that would be 

pursued for full implementation. The risk tolerance curve used for this study was 

developed by modeling numerous curves and selecting one that best meets project 

objectives of improving storage reliability for downstream water supply and environmental 

flows without increasing flood risk downstream. 

Development of the risk tolerance curve involved the formulation of 5 trials where each 

trial divided the full simulation period (population [1985 to 2010]) into training and testing 

periods. Training periods were used to identify an optimal curve, and testing periods were 

used to evaluate that optimal curve under different hydrologic conditions. Each of the five 

trials, as shown in Figure 15, evaluated different periods of training and testing. The 

training periods consisted of 16 years (60% of the population) and the testing periods 

consisted of 10 years (40% of the population).  
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Figure 15. Delineation of testing and training periods for trials. 

Simple statistics of standard deviation and mean 3-day inflow volumes of Lake 

Mendocino from December through March for each of the training and testing periods of 

each trial are presented in Figure 16. This figure also includes lines showing standard 

deviation and mean inflow volumes for the full simulation period (population). These 

statistics differ in standard deviation and/or mean flow volumes between training and 

testing periods of each trial as well as variability across trials. Notably, Trials 3 and 4 show 

similar standard deviation, but there are differences in mean values. Trials 1 and 5 also 

show a similar trend. Visual review of these statistics show that the training and testing 

sample statistics for each trial do not reflect long term increasing or decreasing trends, 

but rather reflect seemingly random differences. These results support an assumption of 

stationarity of the hydrology used for risk tolerance curve development, and differences 

for the various training periods are likely attributed to natural hydrologic variability within 

the population. 
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Figure 16. Standard deviation (SD) and mean Lake Mendocino 3-day inflow volumes from December 
through March for each trial. 

Probability exceedance of Lake Mendocino 3-day inflow volumes for the months 

December through March for both training (left panel) and testing periods (right panel) of 

each trial is presented in Figure 17. Also included in each panel is the distribution of the 

full period (population) volumes shown as the dotted line. The training periods of Trials 1 

through 4 show similar distributions from the 0 to 0.1% exceedance levels and also have 

the same maximum values (0%) as the full period volumes, which is from the 1986 flood. 

Training period for Trial 5, which does not include the 1986 flood, shows lower volumes 

from the 0 to 0.1% exceedance levels. The Trial 5 testing period includes the 1986 flood, 

and therefore has the highest maximum value of all of the testing samples, but also lower 

values for much of the distribution. Trials 3 and 4 show very similar values over the entire 

distribution for both training and testing periods. Comparing inflow volumes for training 

and testing periods for each trial show significant variability between testing hydrology 

and training hydrology. Additionally, variability from the population (full period analysis) is 

well demonstrated over most of the distribution for both training and testing samples.  
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Figure 17. Percent exceedance of December through March Lake Mendocino 3-day inflow volumes for the 
robustness evaluation trials (solid lines) and the full period of analysis (dashed lines) for training (right panel) 
and testing (left panel) periods. 

The training period of each trial was used to generate the candidate risk tolerance 

curves to be evaluated by first simulating perfect forecast operations (PFO) for each 

training period. Then for each day of the training period, forward looking modeled 

ensemble storage levels (assuming no reservoir releases) were generated using the 

HEFS hindcasts with the beginning storage determined by the PFO storage level at that 

time step. Forecasted probabilities or risk of exceeding the storage threshold of 111,000 

ac-ft were calculated for each of the 15 days of the hindcast, producing one risk tolerance 

curve. This process is illustrated in Figure 18 for the training period of Trial 1 for simulation 

day February 9, 1986, where the risk tolerance curve provided in the inset plot is one of 

the candidate curves evaluated. This process generated 5,752 risk tolerance curves for 

Trial 1 (1 curve for each day of the training period), which was reduced to a set of 1,124 

unique curves as shown in Figure 19. This process was repeated for the training period 

of each trial to generate a set of candidate risk tolerance curves for the respective trial. 
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Figure 18. February 9, 1986 example of candidate risk tolerance curves using storage results from the 
PFO simulation of the training sample from Trial 1. 

 
Figure 19. Candidate risk tolerance curves evaluated with LMO model for Trial 1. 

Each of the candidate risk tolerance curves developed for each trial was simulated 

with the LMO model for the training period of each trial. For example, each of the 1,124 
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risk tolerance curves developed for Trial 1 was simulated for the entire training period of 

Trial 1. An objective function consisting of 3 decision variables (provided in the Equation 

2) was developed to evaluate the simulation results of each training period. This objective 

function was formulated based on the project objectives to improve reservoir storage 

reliability while not increasing downstream flood risk. 

𝑀𝑀𝑀𝑀𝑀𝑀 𝐽𝐽 = (𝑆𝑆 + 𝑄𝑄) × 𝑁𝑁𝐿𝐿𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁       (2) 

The S decision variable is calculated as the mean May 10 storage (𝐿𝐿𝑗𝑗
𝑀𝑀𝑊𝑊𝑀𝑀10 in ac-ft) over 

the entire training period for a candidate curve (j) greater than the minimum May 10 

storage of all curves evaluated in the training period, divided by the range of mean May 

10 storage results of all curves evaluated, which is summarized in Equation 3 and 4, given 

n is the number of years in a training period. 

𝑆𝑆𝑗𝑗 =  
𝑈𝑈�̅�𝑗
𝑀𝑀𝑀𝑀𝑀𝑀10−min�𝑈𝑈̅𝑀𝑀𝑀𝑀𝑀𝑀10�

max(𝑈𝑈̅𝑀𝑀𝑀𝑀𝑀𝑀10)−min(𝑈𝑈̅𝑀𝑀𝑀𝑀𝑀𝑀10)        (3) 

�̅�𝐿𝑗𝑗
𝑀𝑀𝑊𝑊𝑀𝑀10 = 𝑈𝑈1

𝑀𝑀𝑀𝑀𝑀𝑀10+𝑈𝑈2
𝑀𝑀𝑀𝑀𝑀𝑀10+⋯+𝑈𝑈𝑛𝑛

𝑀𝑀𝑀𝑀𝑀𝑀10

𝑊𝑊
        (4) 

The S decision variable captures the objective to improve storage reliability, and, 

therefore, higher values favor curves with a higher risk tolerance. 

The Q decision variable is calculated as the total flow volume (𝑞𝑞𝑗𝑗𝑣𝑣𝐷𝐷𝑊𝑊 in ac-ft) above flood 

stage (where flows at Hopland [𝑞𝑞𝐻𝐻𝐷𝐷𝑈𝑈𝑊𝑊𝑊𝑊𝑊𝑊𝑈𝑈] exceed 8,000 cfs) for a candidate curve (j) less 

than the maximum flood volume for all curves evaluated, divided by the range of flood 

volumes of all curves evaluated, which is summarized in Equation 5 through 7, given 1 

cfs for 24 hours is 1.9835 ac-ft. 

𝑄𝑄𝑗𝑗 =
max�𝑞𝑞𝑣𝑣𝑣𝑣𝑣𝑣�−𝑞𝑞𝑗𝑗

𝑣𝑣𝑣𝑣𝑣𝑣

max�𝑞𝑞𝑣𝑣𝑣𝑣𝑣𝑣�−min�𝑞𝑞𝑣𝑣𝑣𝑣𝑣𝑣�
         (5) 

𝑞𝑞𝑗𝑗𝑣𝑣𝐷𝐷𝑊𝑊 = ∑𝑞𝑞𝑓𝑓𝑊𝑊𝐷𝐷𝐷𝐷𝑈𝑈 × 1.9835         (6) 

{𝑞𝑞𝑓𝑓𝑊𝑊𝐷𝐷𝐷𝐷𝑈𝑈|𝑞𝑞𝑓𝑓𝑊𝑊𝐷𝐷𝐷𝐷𝑈𝑈 ∈ ℝ,𝑞𝑞𝐻𝐻𝐷𝐷𝑈𝑈𝑊𝑊𝑊𝑊𝑊𝑊𝑈𝑈 > 8,000}       (7) 

Due to the size of Lake Mendocino and the watershed area impounded by the lake, 

flood control capacity is limited, and during flood events most flooding is caused by natural 

flow downstream of the lake. This makes decreasing flood risk by an appreciable amount 
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challenging for this system. However, the risk tolerance curve is used in EFO to select 

the ensemble member for the calculated flood control release, which includes accounting 

for downstream conditions. Lower risk tolerance values result in the selection of more 

conservative (wetter) ensemble members for scheduling reservoir releases. The EFO 

model seeks to limit flows above flood stage when scheduling releases; therefore, a 

wetter ensemble member (a more conservative forecast) can reduce the contribution of 

releases to downstream flows. As a result, higher values of the Q decision variable favor 

curves that are more risk intolerant (lower risk levels).  

During the process of information gathering for this study, reservoir operators 

expressed a strong aversion to spillway releases. Additionally, design documents of the 

reservoir indicate that storage levels were designed to reach the emergency spillway for 

a 1 in 50-year event (USACE, 1954). A frequency analysis completed by the USACE 

(USACE, 2020) of Lake Mendocino 3-day inflow volumes showed that the largest flood 

event within the simulation period (February 1986) was less than a 1 in 50-year event. 

Therefore, to capture the importance of this criteria to the stakeholder and stay within the 

original level of design, NoSpill is defined as an indicator variable such that if there are 

any simulated spillway releases then NoSpill is set to a value of 0, and if there are no 

spillway releases then NoSpill is set to a value of 1. 

Results of the objective function computations for each of the 1,124 simulations for 

the training period of Trial 1 are provided in Figure 20. It can be seen that many of the 

candidate risk tolerance curves resulted in a spillway release, and therefore have 

objective function values of 0.  
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Figure 20. Objective function results (J) for candidate risk tolerance curves, and S and Q decision variable 
results for the training period of Trial 1. 

The objective function result circled in red shows the highest value, and, therefore, the 

risk tolerance curve associated with that result was selected as the optimal for Trial 1. 

This process was repeated for each trial, and optimal risk tolerance curves were identified 

for each training period which are shown in Figure 21. Trials 1, 2 and 4 identified the same 

curve shape, while Trials 3 and 5 showed different optimal curves due to differences in 

hydrology of their training periods. 

 
Figure 21. Optimal risk tolerance curves identified in training period trials. 
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The testing period of each trial was used to evaluate the robustness of the optimal 

curve derived from the training period of the trial. The robustness was evaluated by 

comparing the performance in meeting the objective function of the derived optimal curve 

to the candidate curves using the testing period. The curves were compared using rank 

position by ranking their objective function score in ascending order, and, since many 

objective function scores were 0 due to the presence of spills, curves were secondarily 

ranked by spill volume in descending order. 

A summary of the results of the training and testing simulations is presented in Table 

5, which shows the number of candidate risk tolerance curves evaluated for each trial as 

well as the decision variable and objective function results for the optimal curve identified 

in the training and testing period. Also included is the percent rank position of the testing 

period objective function result (Jtest) for the optimal curve determined in the training period 

relative to all the curves derived from the training period and evaluated in the testing 

period. 

As previously shown in Figure 21, the training periods of Trials 1, 2 and 4 resulted in 

the same optimal curves, and the results in Table 5 also show that curve shape provides 

robust results for the test period simulations with Jtest values ranking greater than 92% of 

the candidate curves. Also as previously discussed and shown in Figures 16 and 17, the 

training period of Trials 3 and 4 had similar December through March standard deviation 

and 0 to 1% exceedance of 3-day Lake Mendocino inflow volumes, yet showed different 

mean values. Although these trials showed similarities in the very high flow ranges (0 to 

1%), training resulted in different optimal curves. However, it should be noted that the 

optimal curve from Trials 1, 2 and 4 ranked 3rd from optimal in Trial 3 with a training 

objective function score within 2% of the optimal curve score for this trial. As shown in 

Figure 21, the training period of Trial 5 produced a very different optimal curve due to the 

large differences in hydrology for the 0 to 0.1% exceedance range (the highest flows) 

from the other trials. The training period optimal curve from Trial 5 resulted in a spillway 

release for the testing period, which led to an objective function result of 0 and a low rank 

(60%) relative to the other curves. However, the S and Q decision variables for the Trial 5 
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curve showed high values in the testing period compared to the optimal curves in other 

trials. 

Table 5. Summary of robustness testing results for each trial. 
  Trial 

  1 2 3 4 5 

No. Risk Curves 1124 964 1010 1080 1284 

Training 
Periods 

S 0.71 0.70 0.72 0.69 0.90 
Q 0.93 0.99 0.77 0.82 0.79 

NoSpill 1 1 1 1 1 

Jtrain 1.64 1.69 1.49 1.51 1.69 

Testing 
Periods 

S 0.70 0.71 0.69 0.73 0.90 
Q 0.72 0.74 0.80 0.91 0.96 

NoSpill 1 1 1 1 0 

Jtest 1.42 1.45 1.49 1.64 0.00 

% Rank Jtest 92% 93% 75% 93% 60% 

  Jtrain + Jtest 3.06 3.14 2.99 3.15 1.69 

% Rank Jtrain + Jtest 
100
% 100% 99% 100% 69% 

 

Table 5 also includes the combined objective function results for the training and 

testing periods (Jtest + Jtrain), and the percent rank position of the combined result for the 

optimal curve for a given trial within all of the curves evaluated. These combined results 

show that the risk tolerance curve of Trials 1, 2 and 4 was the top ranked curve for those 

trials. The curve from Trial 3 also showed good results in the 99% rank position (7th from 

the optimal curve), and the curve from Trial 5 showed to be suboptimal for the combined 

result. 

Given the assumption of stationarity for the population of the hydrologic data as 

previously discussed, a final test was completed that included the full period of simulation 

(1985-2010) to train and test all candidate risk tolerance curves to fit the final optimal risk 

tolerance curve. Given the longer period of simulation than what was completed for the 

trials, the PFO simulation for the full period derived 1,772 candidate risk tolerance curves 

which included the 3 optimal curves (shown in Figure 21) identified in the 5 trials. Results 

of this analysis are presented in Figure 22, which shows objective function (J) plotted in 

ascending order of value, and, since many have a result of 0 due to spills, secondarily by 
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descending order of spill volume. S and Q decision variables are also included in this plot 

with plotting positions mapped to the objective function values. Additionally, markers are 

included showing the position of the results from the optimal risk tolerance curves derived 

from the 5 trials with marker colors set to match the colors of the variables.  

 
Figure 22. Objective function results (J) for the full period of simulation in ascending order of values, and 
secondarily by descending order of spill volume; S and Q decision variable results are mapped to the 
objective function results; markers show positions of risk tolerance curves identified in the trials with colors 
matching the line colors of J, S and Q. 

Results of the trials and the full period analysis showed strongest consensus for the 

optimal curve identified in Trials 1, 2 and 4, which was selected and used for this study to 

test EFO for Lake Mendocino. However, based on the testing samples from Trial 3 and 

5, results show high sensitivity to the hydrology used for optimization. This indicates that 

the risk tolerance curve used for this study is likely overfitted due to lack of hydrologic 

variability available to train the risk tolerance curve, and future efforts to develop a risk 

tolerance curve could produce different results.  

The methodology presented here is a heuristic approach to optimize a risk tolerance 

curve that is adequate for proof-of-concept testing and evaluating EFO for Lake 

Mendocino. The novelty of this methodology is in using the PFO simulation to derive a 
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realistic number of plausible, candidate risk tolerance curves to be evaluated with an 

objective function, which significantly reduces the scope of the problem compared to a 

brute force approach. Based on the results of the trials, this methodology showed 

sensitivity to the hydrology used for training the risk tolerance curve; therefore, future 

research could be completed that incorporates more extreme hydrology both for flooding 

and drought. Incorporation of more extreme hydrology would also likely require a different 

objective function formulation. The current objective function is heavily weighted against 

spills by incorporating the NoSpill indicator variable as a Boolean multiplier. The 

incorporation of more extreme hydrologic events in the training and testing of risk 

tolerance curves would likely increase the frequency of spills, and the current objective 

function would likely favor very risk averse curves that are not consistent with 

management objectives. Future formulations of the objective function could seek to 

minimize spill volumes while also balancing the storage reliability and flood risk reduction 

objectives.  

Future efforts of sampling training and testing hydrology for cross validation should be 

informed by an evaluation of stationarity of observed and hindcast hydrology using more 

sophisticated methods such as spectral analysis (Fleming et al., 2018). Additionally, 

further research could be completed to cross validate the approach presented here 

against more established optimization methods such as stochastic dynamic programming 

(Stedinger et al., 1984). 
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