
2.3 Week 1 Forecast - Research and Development 
 
2.3.1 Overview 
Research to improve 0-7 day forecasts of extreme weather and water events over Lake Mendocino was 
a key recommendation of the PVA. At this time scale, forecasts are already quite skillful and can be used 
to directly inform reservoir operations. However, as evident from the research that we have performed 
under the FIRO Program, which is described below, there are still plenty of opportunities to further 
improve the week one forecast skill. 
 
Specifically, improving precipitation predictions at this timescale for the Russian River watershed 
requires regional weather forecast models, forecast metrics for ARs related to water management, and 
integration of observational data sets. Regional weather forecast models, such as the “West-WRF” 
model that is developed at CW3E, is tailored toward improving forecasts of precipitation from ARs over 
the Russian River. Unique performance and model evaluation metrics for precipitation and landfalling 
ARs document trends and improvements in forecast skill in existing models that can inform and improve 
FIRO decision making. Assimilation of observations from existing and reconnaissance-based monitoring 
improve models both through providing better initial conditions and for verification.  
 
Week-1 forecast research in support to FIRO at Lake Mendocino includes: the assessment of the skill of 
existing operational predictions of precipitation and streamflow in the Russian River; studies to identify 
key physical processes that need to be resolved in numerical simulations; the development of 
forecasting tools (i.e., dynamical models, assimilation of targeted observations, post-processing, and 
machine learning methods) tailored toward improving forecasts of precipitation and landfalling ARs over 
the Russian River; the design of ensemble systems to reliably quantify the prediction uncertainty; and 
the development of unique performance and model evaluation metrics for precipitation and landfalling 
ARs.  
 
This task has produced the following accomplishments: 
  
● Evaluation of the current skill of CNRFC forecasts of rainfall and inflow to the Lake Mendocino 

watershed for the cool-season indicates FIRO implementation is viable (section 2.3.2). 
● Establishment of West-WRF as a skillful regional model for AR prediction and as a key tool for FIRO-

related process-based research (section 2.3.3). 
● More than 15 peer-reviewed publications focusing on key physical processes that impact the skill of 

forecasting systems for extreme weather and water events. Peer-reviewed results are essential to 
prove the credibility of the scientific underpinnings of FIRO, and enhance the involvement of the 
broader scientific community to advance understanding and modeling of ARs and extreme events in 
ways that benefit FIRO beyond the efforts of the FVA (section 2.3.4). 

● Production of a 34-year West-WRF reforecast data set (section 2.3.5). 
● Development of a novel machine-learning (ML) method that significantly improves the 0-7 day 

forecasts of NCEP’s Global Forecast System (GFS) (section 2.3.5). 



● Development of a WRF ensemble to test the impact of hydrometeorological model uncertainty in 
simulating recent extreme events in the Russian River (sections 2.3.6, 2.5.3).  

● AR Recon data (see section 2.2.2) provide the majority of observations within the critical layer of an 
oceanic AR. The assimilation of these data improves the forecast skills of landfall ARs and 
precipitations over the U.S. West Coast (section 2.3.7). 

2.3.2 Assess Quantitative Precipitation Forecast (QPF) and streamflow/inflow skill for Lake Mendocino 

Assessing the current skills of quantitative precipitation forecast (QPF) and inflow forecasts over Lake 
Mendocino is a central component to evaluating the viability of FIRO at Lake Mendocino. Using median 
travel times of the water releases (i.e., flood wave) and release limits from the reservoir, the PVA 
established that forecasts at 1-5 day lead times are the most critical to support FIRO decision making. 
Based on this, CNRFC cool-season forecasts at the aforementioned lead times of precipitation from 
2000-2017 and inflows from 2005-2017 have been evaluated over several accumulation periods to 
address flood timing-related errors. In addition, the skill in predicting extreme events, or those with a 
frequency of a 2-year return period or greater, have been evaluated in order to provide new insights 
into predictability and impacts of extreme precipitation on watershed scales.  
  
Through this assessment, we found that the CNRFC QPF captures 50% or more of the variance (i.e., R2 > 
0.5) in the forecast for all lead times (1-5 days) and accumulated precipitation metrics (24 hrs, 72 hrs, 
and 120 hrs) except the 24 hour accumulated precipitation at 5-day lead (Table 2.3.1). The 24-hr total 
inflow forecast skill gradually decreases with lead time with R2 from 0.9 for 1-day forecasts to still 
greater than 0.5 at 5-day leads. Other statistics, including the root mean square error of the inflow 
forecast skill are included in Table 2.3.1. 

We further subdivided forecast errors by the magnitude of the events and focused on the events that 
had a climatological return period frequency greater than 2 years. Forecast errors for inflow and 
precipitation were loosely associated with the corresponding observed (verification) magnitudes (R2 = 
0.38 for 120-hr precipitation, R2 = 0.44 for 120-hr total inflows). The forecast errors are insensitive to the 
thresholds used to identify the extreme events. On average, 72-hr and 120-hr forecasts of events that 
were forecasted to be smaller than an extreme (2-yr or greater return period) event were generally 
biased high while forecasts of events that were observed to be extreme events were biased low. Figure 
2.3.1 presents the best-fit linear relation between inflow errors and precipitation errors for extreme 
events, which are highly correlated.  Using this relationship, for the largest such forecast error (occurring 
on 25 January, 2008), the estimated inflow error was -9700 ac-ft (-1.2x107 m3).  More details on this 
regression and other statistics of the extreme events can be found in Weihs et al. 2020. 



 
Table 2.3.1 Coefficient of Determination, RMSE (inches), and bias (inches) for CNRFC 24-hr, 72-hr, and 
120-hr accumulated QPF for Lake Mendocino watershed as a function of lead time (days). The QPF skill 
is calculated during the cool season (Oct – April) from 2000 to 2017. 
 

Lead Time 

Accumulation 
Metric 

1 day 3 days 5 days 

24-hr R2 0.83 0.65 0.39 

24-hr RMSE 0.18 0.23 0.26 

24-hr bias 0.02 0.01 -0.02 

72-hr R2    0.83 0.68 

72-hr RMSE  0.39 0.46 

72-hr bias  0.05 -0.02 

120-hr R2    0.79 

120-hr RMSE   0.58 

120-hr bias   0.03 

 
 



 
Figure 2.3.1 Relation of 120-hr forecasted inflow errors to their respective QPF errors for inflows with 
greater than a 2-year return period. The best fit (regression) line is drawn in dark blue and the 90% 
predictive bounds of the best fit are drawn in light blue. Upper left inset: coefficient of determination 
and equation for the linear best fit with the general form F(x) = ax+b where a is in units of mm and b is in 
units of m3. 
 
Overall, this analysis suggests that there is significant skill in current cool-season single and multi-day 
forecasts of total rainfall and inflow for Lake Mendocino that can be used in FIRO implementation. 
Twenty-four hour precipitation forecasts agree well with observations (R2 exceeding 0.5) out to 4-day 
lead times, while inflow forecasts agree with observations to 5- day leads. Forecasted dry periods will 
also be important for reservoir operations because they may provide the basis for keeping encroached 
water in the reservoir for future supply. Forecasts of no significant rainfall (i.e., less than 25.4 mm,1 inch, 
per day) were found to be quite skillful (hit rate of 0.97). Inflow forecast errors that exceed 10,000 ac-ft 
(1.23x107 m3 ) over a 5-day period were rare during the 1985-2010 period (Figure 2.3.1). 
 
For context it is helpful to consider a FIRO-based Water Control Plan (WCP) where storage is only 
conditional (based on forecast) in the bottom 10,000 ac-ft (1.23x107 m3) of the flood control pool (“FIRO 
space”). Under this condition, if inflow forecasts are too high, a portion or all the stored water in the 
FIRO space might be released without being replaced. If inflow forecasts are too low, flood control space 
above the FIRO space might be encroached.  In this latter case, however, there is still more than 30,000 
ac-ft of dedicated flood control space below the crest of the emergency spillway. Thus, even the largest 



forecast errors found in the QPF and inflow (hindcast) data appear manageable. The effect of forecast 
inflow errors in FIRO WCPs is fully evaluated in Section 5. 

2.3.3. Establish a forecast system and evaluation methodology for West-WRF 

Diagnosis of regionally important precipitation processes on scales not adequately resolved by global 
models is performed using regional forecast models. In turn, optimization of regional forecast models is 
important for accurate precipitation forecasts, through enhancements in horizontal and vertical 
resolution, along with the ability to explicitly represent (rather than parameterize) important physical 
processes associated with mesoscale meteorological features including orographic precipitation. CW3E’s 
West-WRF (Martin et al. 2018) is a version of the Weather Research and Forecasting (WRF) model (a 
community model developed by the National Center for Atmospheric Research and others; Skamarock 
et al. 2008; Powers et al. 2017) that is run in near real time (West-WRF NRT) from December to March, 
and is used year-round for research purposes. West-WRF is continually being improved to optimize 
forecasts of extreme precipitation events, especially those associated with ARs, over the western U.S. 
(Martin et al. 2018). Several recent studies have demonstrated that relevant small-scale precipitation 
processes (e.g., frontal waves, narrow cold-frontal rainbands, and orographic convection) can be well-
represented by West-WRF. In addition, West-WRF provides higher spatial resolution for longer lead 
times than is available from any similar mesoscale NWP model run nationally (Figure 2.3.2). 

West-WRF NRT has been run every winter since 2015-2016. Forecasts created in real-time were used to 
add interpretive value to daily operations by several partners, including the National Weather Service, 
municipal water agencies, and the CA Federal-State Flood Operations Center (FOC). Notably, specialized 
West-WRF forecast products were provided to FOC during the emergency involving flooding on the 
Feather River and damage to the Lake Oroville Dam spillway. Mike Anderson, California’s State 
Climatologist and a key individual in FOC’s response to the Oroville crisis, has provided an informal letter 
thanking CW3E for these efforts. 
 
Throughout the FIRO project, West-WRF was upgraded each year, and culminated in enhancements to 
the NRT implementation during the 2020 water year (WY). Figure 2.3.2 shows the unique configuration 
of West-WRF, which is designed specifically to simulate the formation and development of ARs well 
upwind of the western U.S., a model reach that is not available (neither in space nor time) from NCEP 
regional modeling systems. The current West-WRF NRT configuration includes an outer domain (with 9-
km resolution) covering much of the Eastern Pacific Ocean and western U.S., and a nested 3-km domain 
covering California (Figure 2.3.2). For comparison, the domains of NCEP operational models, the North 
America Model (NAM) and the High-Resolution Rapid Refresh (HRRR) model, as well as the maximum 
operational-forecast lead time for each system, are shown in Figure 2.3.2. During WY 2020 West-WRF 
NRT simulated the atmosphere on sixty vertical levels (increased from 36 the prior water year) up to 10 
hPa. Forecasts are run once daily from 0000 UTC initializations, are run out to 7-day lead times for the 9-
km domain, and out to 5-day lead times for the 3-km domain. There are numerous options for 
parameterization schemes in WRF, and those used in West-WRF largely follow those used in the 
validation study by Martin et al. (2018) and in subsequent sensitivity testing by CW3E.  
  



 
 
Figure 2.3.2 Computational domains and forecast maximum lead time for WY 2020: West-WRF 9-km 
(black) and 3-km (red), NAM 12-km (orange), and HRRR 3-km (magenta). 
  
During WY 2020, three separate West-WRF NRT configurations were run daily, differing in input initial 
boundary conditions (IBCs) and lateral boundary conditions (LBCs). The first simulation uses NCEP’s GFS 
(Environmental Modeling Center 2003) as its boundary conditions, as was done in previous years’ NRT 
simulations. The second simulation uses the ECMWF deterministic high-resolution forecast (ECMWF 
2020). We also ran an experimental third West-WRF NRT configuration, with a single-domain simulation 
spanning the 9-km domain, but with 4-km grid spacing and using the ECMWF forecasts as input. Using 
different global forecasts as input to West-WRF aids in understanding initial condition uncertainty and 
reveals more of the possible range of forecast solutions. The 4-km single domain simulation improves 
our understanding of forecast dependence of model solutions on model grid spacing, number of model 
vertical levels, and convective parameterization scheme. 
 
Several automated and post-season verification tools have been developed to run in parallel with the 
West-WRF NRT forecasting system. The forecast accuracy and model skill in AR landfalls, and 
precipitation amount and spatial coverage, are evaluated on daily, event, and seasonal time scales for 
West-WRF and for national operational forecast models as comparison. For AR landfalls, we have 
applied the Method for Object-based Diagnostic Evaluation (MODE), which is part of the Model 
Evaluation Tools (MET) package, developed by the Developmental Testbed Center at the National 
Center for Atmospheric Research, to forecasted maps of IVT as a novel approach to AR forecast skill 
assessment. AR objects are defined based on thresholds of the IVT forecast, axis length, and other 
criteria. AR object forecast analyses are performed each day for the West-WRF NRT and supporting 



global models, wherein AR object size and shape distributions (referred to as Measure of Effectiveness), 
90th percentile intensity, angle of orientation, and landfall error are assessed as a function of lead time. 
Since 2017, results of the object detection statistics are posted on the CW3E forecast verification viewer 
page here and compiled into seasonal statistics of AR performance.  
  
West-WRF forecasts of AR frequency, landfall, and precipitation skill have been assessed over several 
water years. Verification results are summarized below for WY 2019 and WY 2020. Figure 2.3.3 shows a 
summary of statistics for West-WRF and GFS AR forecasts during WY 2019 using MODE.  
 
● West-WRF predictions have a lower landfalling position error compared to GFS up to a 5-day lead 

time (Figure 2.3.3a) where all errors in both models are less than 200 km.  
● The skill in predicting the AR intensity has been analyzed for weak and strong storms. For weak 

storms, West-WRF produced a smaller intensity error compared to GFS; however, it overpredicts the 
intensity of the AR object compared to GFS for strong ARs (Figure 2.3.3b).  

● A new forecast metric, called Measure of Effectiveness, describes the multi-dimensional shape/size 
of the AR. Measure of Effectiveness is a robust metric for communicating AR skill as it provides 
additional information on the geospatial placement of ARs. It shows that West-WRF AR forecasts 
consistently improve as the AR approaches landfall (Figure 2.3.3c). 

● GFS and West-WRF have similar hit rates, miss rates, and false alarm rates at 120-hr lead times over 
the area where AR landfalls occur most often (i.e., northward of Point Conception, CA) (Figure 
2.3.3d).  

● West-WRF produces a higher hit rate, which represents the fraction of forecasts of ARs that actually 
arrive, than GFS along the southern California coastline (Figure 2.3.3d).  

● At a 5-day lead time, the hit rate can be as low as 20% in both models. West-WRF also has a higher 
false alarm rate along the southern California coastline. Since ARs are less common over Southern 
California, the landfall errors in this region may be dominated by relatively few events (Figure 
2.3.3d). 

 

https://cw3e.ucsd.edu/cw3e-atmospheric-river-landfall-met-mode-verification-tool/


 
Figure 2.3.3  WY 2019 seasonal statistics of: (a) average (blue) and maximum (red) landfall position error 
(km) of West-WRF (light colors) and GFS (dark colors); (b) average IVT intensity error of West-WRF (light 
colors) and GFS (dark colors) subdivided into categories where the model is stronger (blue) / weaker 
(gray) than each model’s analysis; (c) measure of effectiveness of West-WRF objects as a function of 
forecast lead time (colors); and (d) 120-hr forecasted AR landfall duration total, hit rate, miss rate, and 
false alarm rate for West-WRF (top row) and GFS (bottom row).  
 
Precipitation forecast skill was primarily verified against the CNRFC’s Quantitative Precipitation Estimate 
(QPE). West-WRF shows several areas with marked improvements over GFS in forecasts of precipitation. 
West-WRF has a reduced mean wet bias over the Northern and Central Sierra Nevada mountains and 
reduced dry mean bias over the Transverse Ranges and coastal areas of Southern California during WY 
2019 (Figure 2.3.4). The forecasted precipitation over the Russian River watershed (black outline in 
Figure 2.3.4) and the surrounding Coastal Ranges north of the San Francisco are often too dry in both 
West-WRF and GFS. We found that this dry bias is persistent across all lead times, systematic across all 
water years where West-WRF data is available (WY 2016-WY 2020), and most pronounced over the 
southwestern region of the watershed near Venado, CA (38.6055° N, 123.0081° W). Given that the dry 
bias is systematic in both West-WRF and GFS, this finding presents an opportunity for future model 



developments and post processing techniques. Additionally, preliminary West-WRF 9-km forecasts using 
ECMWF-based initial and boundary conditions have lower centralized root mean squared error (CRMSE) 
in 24-hour precipitation out to 7 days' lead time in the Russian River basin (Figure 2.3.5). 
 

 
Figure 2.3.4 Mean 24-hr total QPF error (mm) computed over the period between 1 December 2018 and 
31 March 2019 for (top row) West-WRF 9 km and (bottom row) GFS 25 km forecasts as a function of 
forecast lead time. The values above each panel represent the forecast hours used to aggregate the 24-
hr QPF. The Russian River Watershed is outlined in black. 
 
 
 
    



 
 
Figure 2.3.5  Centered root mean squared error (CRMSE) for 9-km West-WRF 24-hour precipitation over 
the Russian River basin for all matched forecast times currently available from NRT-GFS (blue) and NRT-
ECMWF (green) as a function of lead time out to seven days. The sample size (days) for each lead time is 
overlaid in white.  
 
Improvements to the West-WRF regional forecasting system will continue to leverage research, 
technology, and resources. The verification highlights the importance of multi-scale weather evolution 
and error propagation, where, for example, large shifts in the AR forecast location have significant 
impacts for watershed-level precipitation forecasts.  

2.3.4. Identify key physical processes that need to be resolved in model forecasts   

Improving the model representation of important physical processes is the foundation of forecast 
improvements. This task identifies and investigates the atmospheric processes and features that need to 
be better represented for forecast improvement. These include low level jets (LLJ); dynamical patterns 
that generate AR families; the impact of aerosols on cloud and precipitation processes; mesoscale 
dynamics; mesoscale frontal waves (MFWs); the interactions between extratropical cyclones and ARs; 
large scale circulations and their impacts on AR presence or absence; the impact of antecedent 
conditions and quantification of the effect of terrain and AR orientation on precipitation patterns 
associated with ARs; and advances in tracking ARs.  
 
Larger scale circulations are an important factor contributing to the spatio-temporal evolution of ARs. 
For example, extratropical cyclone interactions with ARs can play a role in AR strength and impacts. 



Zhang et al. (2019) found that 50% of cyclogenesis over the eastern Pacific involves a pre-existing AR, 
and 80% of ARs are associated with extratropical cyclones. A positive feedback was identified between 
the AR and cyclone, which intensifies the cyclone and enhances the AR IVT. This feedback is driven by 
water vapor provided by the AR, which enhances precipitation, resulting in latent heat release, and the 
stronger winds that may be associated with the cyclone. Fish et al. (2019) defined and characterized 
sequences of ARs occurring in quick succession as AR families (Figure 2.3.6), finding that these families 
are frequently associated with identifiable synoptic scale patterns. AR families can have impacts 
analogous to those of long duration ARs. The most extreme ARs affecting the Russian River are often the 
longest duration rather than the highest intensity (Figure 2.3.7, Dettinger et al., 2018; Lamjiri et al., 
2017). This highlights the importance of knowing and forecasting durations and storm-total moisture 
transport to forecasting storm impacts and flooding and has been demonstrated for gridded 
precipitation data as well as point-scale in-situ observations in the Russian River. Focusing specifically on 
orientation of ARs affecting the Russian River, Hecht and Cordeira (2017) found that south-
southwesterly oriented ARs produce, on average, more precipitation in the watershed than westerly 
oriented ARs. These landfalling ARs with different orientations occur in association with different 
synoptic-scale flow patterns. Additionally, the combination of water vapor flux direction and synoptic 
scale forcing for ascent can lead to greater precipitation accumulations.  
 

 
Figure 2.3.6 Schematic of the AR families definition. Adapted from Figure 2 of Fish et al.(2019). 
 



 
Figure 2.3.7 Latitudinal distribution of (a) the annual-maximum storm-sequence total vapor transport 
with return periods from 2 to 3 years and from 10 to 30 years, (b) the duration of these same storm 
sequences, (c) the average IVT over the entire storm sequence, and (d) the maximum instantaneous IVT 
during the storm sequence, for ARs or uninterrupted sequences of ARs making landfall along the U.S. 
West Coast, water years 1981–2016 (Figure 8 from Dettinger et al., 2018). 
 
Mesoscale processes are another critical aspect that need to be resolved by models to accurately 
predict the impact associated with ARs. We have investigated key phenomena including mesoscale 
frontal waves (MFWs), latent heating and moist processes, and LLJs. MFWs have often been identified in 
ARs affecting the Russian River watershed. Multiple case studies have shown that MFWs can influence 
the intensity, location, and especially duration of ARs, and that they are challenging to forecast more 
than 1-2 days out. They often lead to serious forecast errors in landfall location and precipitation 
amounts. Martin et al. (2019a) highlights these issues in a December 2014 case study of an AR impacting 
the Russian River. Specifically, the study illustrates the need to identify offshore mesoscale frontal 
waves in real time and to characterize the forecast uncertainty associated with these events when 
creating hydrometeorological forecasts. 
 
Using Global Precipitation Mission satellite data and West-WRF to investigate an impactful February 
2017 AR, Cannon et al. (2020) illustrates a case where the precipitation processes and subsequent latent 
heat released offshore strongly influenced the AR’s evolution. The study notes that, although these 
precipitation mechanisms are present in global-scale models, the difficulty that coarse-resolution 
models have in accurately representing the generated precipitation likely translates to uncertainty in 
forecasted heating tendencies, their impact on the AR evolution, and ultimately the impacts of ARs upon 
landfall. 
 
Results from Demirdjian et al. (2020a) suggest that the precipitation forecast for an impactful AR that 
affected the Russian River in January 2017 was particularly sensitive to the initial moisture content 



within the AR due to its role in precipitation enhancement. Thus, the important processes that a model 
should represent include the evolution of moisture content and associated processes, including the 
latent heating. This case is representative of a typical AR evolution, which underscores the necessity of 
correctly modeling moist processes to improve forecasts of AR-associated precipitation.  
 
The pre-cold-frontal LLJ is the core of the water vapor transport within ARs, though its dynamics are not 
completely understood. Dropsonde observations from AR Recon (see section 2.2.2) show that the LLJ 
typically is located at ~1-km elevation ahead of the cold front, with an average maximum wind speed of 
30 m s−1. The geostrophic wind is the result of the balance between the pressure gradient (flow from 
high to low pressure) and the Coriolis force (caused by the earth’s rotation). There is an unbalanced 
portion of the geostrophic wind in the LLJ, known as the ageostrophic component, that occurs within 
the atmospheric layer from 750–1250 m known to strongly control orographic precipitation associated 
with ARs (Neiman et al. 2002, 2009). That means the unbalanced component of the LLJ adds vapor 
transport where it is most likely to enhance precipitation. Analysis in Demirdjian et al. (2020b) 
demonstrates that it is necessary to correctly model the LLJ, including relevant characteristics at all 
scales, to accurately forecast precipitation associated with ARs (Figure 2.3.8). 
 

 
Figure 2.3.8 A conceptual representation of the enhancement (green) of water vapor transport within 
the low-level jet due to the ageostrophic winds and the dynamical processes serving to 
accelerate/decelerate the ageostrophic wind. Adapted from Figure 13 of Demirdjian et al. (2020b). 
 
At the microphysical scale, aerosols in the atmosphere also influence AR characteristics. Thus far the 
focus of FIRO aerosols research at CW3E has primarily been on the impact of aerosols on cloud 
properties and precipitation generation. These studies use data collected in support of FIRO goals (see 
Section 2.2). Martin et al. (2019b) concluded that terrestrial and long-range-transported aerosols can be 
important sources of warm ice nucleating particles (INPs) during ARs. These warm INPs impact cloud 



microphysics, specifically mixed-phase cloud properties. In addition, Mix et al. (2019) investigated stable 
isotope compositions of surface-air water vapor along with independent meteorological factors such as 
temperature and relative humidity. As stable isotopes in precipitation and water vapor can help to trace 
rainout and post-condensation processes, they may be used to better characterize and explain macro 
scale structures (e.g., ARs, fronts, small-scale jets, and orography) and microphysical processes (e.g., 
mixed-phase hydrometeor processes, ice nucleating particles, below cloud evaporation) affecting 
precipitation amount and efficiency. It was clear from Mix et al. (2019) that rainout and post-
condensation processes can dominate in different parts of ARs. These results and analyses contribute to 
answering important questions regarding the temporal evolution of AR events and the physical 
processes that control them at local scales, all of which affect AR impacts and predictability.  
 
Finally, work has also been conducted to improve procedures for identifying and tracking ARs in 
historical data, forecasts, and future climate projections. FIRO PI F. Martin Ralph co-leads the 
Atmospheric River Tracking Method Intercomparison Project (ARTMIP), which is an international 
collaborative effort to understand and quantify the uncertainties in AR science deriving from the many 
detection algorithms available (Shields et al., 2018; Rutz et al., 2019). Ultimately, these uncertainties 
make results from most studies of the long-term properties of ARs and their impacts, and at least some 
short-term studies of individual ARs, somewhat detection-method dependent, in ways that can 
challenge the basics underlying FIRO forecasts and responses. For example, an initial study conducted 
for the Russian River watershed showed that tracking methodologies that are more spatially or 
temporally restrictive identify fewer AR events (Ralph et al. 2019). Thus, ARTMIP is needed to improve 
understanding and predictions of AR arrivals and impacts to better support the decision-making process 
in the future.  
 
Table 2.3.2 Peer-reviewed results identifying key physical processes to be represented in models. 

Reference Primary Result 

Cannon et al. 2020 
(Mon. Wea. Rev.) 

Precipitation processes and subsequent latent heat released 
offshore strongly influence AR evolution.  

Demirdjian et al. 2020a 
(Mon. Wea. Rev.)  

There is a substantial ageostrophic component of the low level jet 
which requires high resolution models to simulated. 

Demirdjian et al. 2020b 
(J. Atmos. Sci.)  

ARs are sensitive to moisture content because it modulates both the 
orographic and dynamic component of precipitation. 

Fish et al. 2019 (J. 
Hydrometeor.) 

Sequences of ARs occurring in quick succession of one another (AR 
families) are frequently associated with identifiable synoptic scale 
patterns. 

Hecht et al. 2017 (Geo. 
Res. Lett.) 

South-southwesterly oriented ARs produce, on average, more 
precipitation in the watershed than westerly oriented ARs. 



Lamjiri et al. 2017 
(Geo. Res. Lett.) 

The most extreme ARs affecting the Russian River are often the 
longest duration rather than the highest intensity. 

Lamjiri et al. 2018 (SF 
Estuary and 
Watershed Sci.) 

ARs bring on average 80% of the extreme precipitation in about 100 
hours per year. 

Martin et al. 2018 (J. 
Hydrometeor.) 

Improving water vapor transport accuracy can significantly reduce 
regional model precipitation errors during ARs. 

Martin et al. 2019a (J. 
Hydrometeor.) 

It’s essential to identify offshore mesoscale frontal waves in real time 
and to characterize the forecast uncertainty associated with these 
events when creating hydrometeorological forecasts. 

Martin et al. 2019b 
(Atmos. Chem. and 
Physics) 

During ARs, terrestrial and long-range-transported aerosols can be 
important sources of warm ice nucleating particles (INPs), which can 
impact mixed-phase cloud properties. 

Mix et al. 2019 
(Atmospheres) 

Rainout and post-condensation processes can dominate during 
different portions of ARs at local scales. 

Ralph et al. 2019 
(Clim. Dyn.) 

19 +/- 4 ARs on average affect the Russian River each year. 

Rutz et al. 2019 (JGR 
Atmospheres) 

Methods with more restrictive AR identification and tracking criteria 
tend to have weaker statistics in terms of AR climatology, while the 
statistics for methods with less restrictive criteria are more robust. 

Shields et al. 2018 
(Geosci. Model Dev.) 

ARTMIP is an international collaborative effort to understand and 
quantify the uncertainties in AR science based on detection 
algorithms alone to inform AR research. 

Zhang et al. 2019 
(Geo. Res. Lett.) 

50% of cyclogenesis over the eastern Pacific have a pre-existing 
AR, and 80% of ARs are associated with extratropical cyclones. A 
positive feedback was identified between the AR and cyclone, which 
intensifies the cyclone deepening and also enhances the AR IVT.  

 
The research conducted in support of this task has advanced our knowledge of the physical and 
dynamical processes determining the formation and evolution of ARs. Future efforts that have strong 
potential to further improve FIRO forecasts and benefits include:  

● More accurately quantify impacts on AR precipitation from transport directions and vertical 
distributions of water vapor.  

● Continue work on understanding MFWs and the key physical processes that drive their 
evolution in order to improve their representation in models.  

●  Machine learning algorithms deployed to exploit some really large data sets, such as the CW3E 
reforecast, to enhance our understanding of key physical processes. 



These and other efforts will enable improving the representation of physical processes in models, and 
thus the accuracy of precipitation forecasts at longer and longer lead times.  

2.3.5. Reforecast, machine learning, and post-processing  

CW3E has developed a 34-year regional reforecast to assess the benefits of a higher resolution forecast 
to CNRFC operations and streamflow forecasts than is provided currently by the NCEP/CNRFC system. 
The CNRFC ensemble streamflow forecasts are a critical component to support FIRO, and currently these 
streamflow forecasts rely on the National Centers for Environmental Predictions (NCEP) 30-year GEFS 
V10 reforecast (~1 degree resolution) meteorology. To produce the ensemble streamflow forecasts that 
are used in the Ensemble Forecast Operations Model (see section 2.7), the 30-year NCEP reforecast 
calibrates the Meteorological Ensemble Forecast Processor (MEFP), which provides forcing for the 
Hydrologic Ensemble Forecast Service (HEFS) for the streamflow reforecasts. To develop its higher 
resolution reforecast, CW3E ran West-WRF, using the same physical packages and computational 
domains identical to those used for the 2019-2020 NRT season, to dynamically downscale the ~0.5 
degree control member of the Global Ensemble Forecast System (GEFS) to 9 and 3 km for water years 
1986-2019. All simulations were run on the U.S. Army Engineer Research and Development Center 
(ERDC) DoD Supercomputing Resource Center (DSRC) Onyx Cray XC40/50 system. The whole date set 
includes about 320 TB of data. The reforecast dataset consists of daily West-WRF initializations at 0000 
UTC from 1 December to 31 March, out to 7 days for the 9-km domain and 5 days for the 3-km domain 
(Figure 2.3.2). Similar to the West-WRF NRT, verification metrics are being computed for the reforecast 
precipitation over several California watersheds, AR strength and landfall position, and near-surface 
meteorological conditions. To the best of our knowledge, this is the only high-resolution reforecast 
effort that has been undertaken at a climate time scale (30+ years) to focus on a region in the US as it 
requires a significant effort of individuals, computing resources, and storage. 
 
In addition to assessing the benefits of a West-WRF high-resolution reforecast to CNRFC operations, the 
reforecast is also a data set that allows to develop and test post-processing techniques and machine 
learning methods to reduce raw model output biases and ultimately enhance predictive capabilities, as 
well as perform in-depth process-based studies. We are exploring =ML algorithms in a post-processing 
framework to try to correct some of the biases in forecasts by training ML processes with an historical 
data set that includes both past predictions with forecast models and corresponding observations. We 
have developed a convolutional neural network (CNN) to improve GFS 0-7 days forecasts of IVT 
(Chapman et al. 2019) using a 10-year training data set. Figure 2.3.9 shows the performance of this 
novel approach, called GFSnn. GFS predictions are improved by about 5% at the beginning of the 
forecast to over 20% seven days out, when GFS is worse than climatology. Effectively GFSnn extends 
GFS’s period of skillful predictions, based on root-mean-squared-error (RMSE) and other metrics. The 
GFSnn method has been run in real-time for the latter part of the 2020 WY as part of the NRT prediction 
systems with results made available on the CW3E website. 

 
 



  
Figure 2.3.9 Performance IVT metrics computed over the 2018WY and the East Pacific / Western U.S. for 
the 0-168 hour prediction of IVT: (a) bias, (b) centered root mean square error (CRMSE), (c) RMSE, and 
(d) Pearson correlation. Shown methods include the NOAA’s Global Forecast System (GFS, red), the CNN 
correction of GFS (GFSnn, blue), persistence (black), and climatology (red). For this study, as a ground-
truth data set we used the National Aeronautics and Space Administration Modern-Era Retrospective 
analysis for Research and Applications version 2, MERRA-2). Adapted from Chapman et al. (2019). 
 
Both the high resolution 34-year reforecast focused on extreme precipitation and post processing 
approaches that were developed during the FIRO effort offer opportunities to improve weather 
forecasts. The reforecast will provide collaborators at the CNRFC with a much higher resolution weather 
data to generate streamflow ensemble predictions, operational forecasts that for Lake Mendocino drive 
the Ensemble Forecast Operations Model (EFO; see section 2.7). The reforecast will also enable in-depth 
evaluation of West-WRF representation of key physical processes that drive extreme precipitation 
events. FIRO research has demonstrated that ML techniques can significantly improve forecasts from 
operational models. In addition, verification of the West-WRF has identified model biases (see section 
2.3.4) that statistical post-processing approaches can target to improve the forecasts. The immense 
amount of data from the reforecast provides the training data needed to fully exploit the potential of 
both statistical and ML post-processing approaches to further improve the forecast.  

2.3.6 Development and assessment of uncertainty quantification for large-precipitation events in 
West-WRF 

Uncertainties regarding forecast initial conditions and the model representation of key processes limit 
the predictability of extreme precipitation. Efforts to understand the sources of West-WRF QPF error 
during ARs (Martin et al., 2018) and to generate probabilistic precipitation forcing for hydrologic 



modeling (e.g., Section. 2.5.3; Fig. 2.5.7) include the development of ensemble simulations that attempt 
to span the range of uncertainties in the model’s initial state, unresolved processes, and 
parameterization error (Berner et al. 2014). These simulations provide robust demonstrations of QPF 
skill and spread that translate into confidence in the model’s representation of extreme precipitation 
events in the Russian River watershed. Other sources of error in West-WRF simulations have been 
investigated by evaluating the impact of selected perturbations to the model’s representation of 
extreme precipitation mechanisms (e.g., upslope flux, mesoscale frontal waves, and frontal rainbands). 
This research enables also the identification of key model deficiencies that highlight opportunities for 
(eventual) forecast improvements.  
 
For example, sensitivity tests in simulations of five extreme events impacting the Russian River 
watershed led to significant changes in the West-WRF configuration employed in both the NRT (see 
section 2.3.3) and the reforecast (see section 2.3.5). These changes included an expanded model domain 
to better simulate offshore AR evolution and an increased number of model levels to better resolve AR 
interactions with terrain. Ensemble simulations were used to identify meteorological features that, 
when uncertain, cause divergence of simulated outcomes and forecast, such as MFWs, which in turn 
become targets for improved or increased observations (e.g., AR Recon, see section 2.2.2) to reduce 
these problematic uncertainties. Twenty ensemble members were created using 10 variations in the 
model physics and 10 variations in the subgrid cell processes to mimic unresolved uncertainties (i.e., via 
the Stochastic Kinetic Backscatter, SKEBS) for 6 total AR events. These ensembles were used to force 
hydrologic models to understand the relationship between atmospheric uncertainty and hydrologic 
sensitivity (see section 2.5.3). Increased use of ensembles in the FVA has documented West-WRF’s 
ability to span the realistic ranges of precipitation extremes for individual events.  

2.3.7. Application of advanced data assimilation methods for extreme event forecasting   

The ability of an NWP model to produce accurate predictions is limited by imperfect initial conditions 
and representations of physical processes. Data assimilation (DA) methods blend the information 
provided by observations with a model forecast, resulting in an improved estimate of the current state 
of the atmosphere, which in turn becomes the initial condition for future simulation and forecasts. 
When observations are sparse, as over the Northeastern Pacific, DA techniques are needed so that the 
model itself can fill in conditions between observations with physically realistic estimates. Specifically, in 
the FIRO context, advanced DA methods are the key to improve simulations of the origins and evolution 
of ARs, to improve forecasts of the landfalling ARs and precipitation. Towards this end, we have 
performed a series of studies, including i) assessing the impacts of observation gaps in ARs over the 
upstream Northeastern Pacific, with particular focus on the value of AR Recon data (see section 2.2.2) 
and  ii) comparisons of the impacts of several different DA methods on AR forecasts. 
  
A significant data gap typically exists in the lower atmosphere (below 450 hPa) during AR events over 
the Northeastern Pacific. Radiance data from satellites, which is assimilated in the NCEP Global Forecast 
System model, doesn’t address this gap. However, AR Recon data (see section 2.2.2) provide the 
majority of observations within the critical layer of an oceanic AR (Figure 2.3.10; Zheng et al. 2020a) 



during those missions. In 2016, 2018, and 2019, across 15 missions, the dropsondes provided about 99% 
of humidity, 78% of temperature, and 45% of wind observations over the area where an AR was present. 
 
The impact of these AR Recon dropsonde data are examined in data denial experiments wherein 
simulations without the dropsondes are compared to simulations that include them and to 
observations. As shown in Figure 2.3.11, preliminary results show improved simulations of 24-hr 
precipitation totals when the dropsondes are included. Improvements in RMSE are obtained at most 
lead times and for most IOPs. Improvements are found for most lead times and all IOPs when 
correlations are used to measure success. In the case of consecutive missions that were executed every 
other day, the improvements resulting from dropsonde DA were consistently larger in a mission 
compared to the previous one (Zheng et al. 2020b). Additionally, Stone et al. (2020) demonstrated that 
the assimilation of AR reconnaissance soundings results in a forecast error reduction similar to the North 
American radiosonde network for the days when at least two flights were flown. 
 
Analyses and forecasts of landfalling ARs are sensitive to the DA methods used. A significant finding 
from the AR Recon data denial experiments is that a four-dimensional DA scheme, hybrid 4D-EnVar, 
provides more realistic initial conditions and thereby improved downstream precipitation forecasts 
when compared to a three-dimensional approach, the hybrid 3D-EnVar, particularly for fast moving 
systems associated with complex environments (e.g., the genesis and termination stage of an AR; Zheng 
et al. 2020c). In applications of the hybrid 4D-EnVar method to West-WRF, AR Recon data have been 
shown to improve forecasts for landfalling ARs and precipitation in 12 out of 15 cases. The West-WRF 
hybrid 4D-EnVar system allows the assessment of the value of particular field observations, increases 
the skill of forecasts of extreme events, and is an important tool for improving the understanding of AR 
dynamics and thermodynamics. Our research shows also that the further development of data 
assimilation algorithms will likely improve the forecast ability to leverage the information provided by 
observations. For example, new algorithms can be developed to better capture error characteristics 
associated with different atmospheric processes (e.g., by implementing adaptive error inflation and 
covariance localization). 
 
  
 



 
  

Figure 2.3.10 Three-dimensional illustration of observation distributions for non-radiance data (a) 
without and (b) with AR Recon flight-level and dropsonde data (black filled circles). The black dots 
are the AR Recon data used in the operational GFS. This figure is based on the observations for 2016 
IOP1. The grey and pink shaded on (a-b) are the isosurface for 50th (25 kg m-1 s-1) and 95th (80 kg m-1 
s-1) layer IVT values, respectively. Surface shading and contours are for the total IVT value starting 
from 250 kg m-1 s-1 with 250 increments. Adapted from Zheng et al. (2020). 

 
 



 
Figure 2.3.11 Improvements and degradation (box plot) of 24-h accumulated prediction forecasts from 
day 1 to day 6 (a total of 11 lead times) verified over the western U.S. (30°N-50°N, 125°W-110°W) 
resulting from the assimilation of dropsondes data collected during the 15 AR Recon IOPs, based on 
boxplot of spatial correlation, across 15 AR Recon IOPs. At top and bottom of each IOP is the number of 
lead times for which the experiment resulted in an improvement (pink) or degradation (blue). Grey 
arrows indicate the consecutive missions when two missions were within 3 days. Adapted from Zheng et 
al. (2020b). 

2.3.8 Conclusions and Recommendations 

By its nature, FIRO depends on the availability of skillful forecasts of storms and storm interludes. An 
assessment of CNRFC forecasts has shown that the forecasts are already sufficiently skillful to support 
FIRO viability at Lake Mendocino but improvements in forecasts are still possible and would further 
enhance FIRO benefits. Evaluating and improving the skill of forecasts (especially, week-one forecasts) is 
thus central to the viability and value of FIRO. This research highlights several processes that determine 
the impact of ARs. These studies provide the guidance on model processes that are important to 
improving future forecasts. The development of West-WRF and verification processes have shown the 
value of a regional model focused on extreme precipitation events, in particular ARs. Novel testing of 
post-processing and data assimilation approaches tested under FIRO has illustrated how new 
technologies can improve forecast skill. Together, the multi-pronged approach to week-1 forecasts 
described here has shown that forecast improvements are possible as well as providing foundational 
information for recommendations as to how to improve week 1 forecasts of extreme events and ARs.  
 



The following recommendations will enhance the benefits of week-one forecasts for use in FIRO: 
● Test better forcings (e.g., input boundary and initial conditions), improvement and tuning of key 

physical parameterizations (see section 2.3.3) of the West-WRF modeling system. 
● Provide results from research in a usable way to stakeholders, e.g., via decision support and 

situational awareness tools (see section 2.7).  
● Verify forecasts using metrics that are relevant for ARs and water management.  
● Implement ensemble-prediction methods using West-WRF to provide forecast uncertainty 

information along with the NRT forecasts. 
● Leverage the new West-WRF reforecast data to develop and test ML tools for even larger 

forecast improvements, including sharper and more reliable probabilistic predictions. 
● Enhance algorithms to better assimilate the observations collected during AR Recon, by 

including high-vertical-resolution dropsondes, airborne radio occultation measurements, and 
buoy surface pressure. 
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