
Lake Mendocino and Upper Russian River Water Temperature Model 
 
1. Overview/Summary 
 
The National Oceanic and Atmospheric Administration’s National Marine Fisheries Service 
(NOAA Fisheries) has been monitoring the upper Russian River stream temperatures and water 
temperature at different depths in Lake Mendocino during summer through fall (2015 - 
2020).  These data provide valuable information regarding temperature conditions in Lake 
Mendocino that greatly influence salmonid habitat temperature conditions in the upper Russian 
River.  Based on these data, a machine learning modeling approach has been developed to 
estimate stream and reservoir water temperatures that influence the quality of salmonid habitat 
within the upper Russian River. The main objective of this study is to gain a better 
understanding of the effects of different reservoir storage levels on cold water pool storage in 
Lake Mendocino and associated water temperatures in the upper mainstem Russian River 
during the juvenile steelhead trout summer rearing season and the fall migration period of adult 
Chinook salmon. 
 
One of the recommended actions of the preliminary viability assessment of Lake Mendocino 
(Forecast Informed Reservoir Operations Steering Committee, 2017) are: “Water quality in the 
reservoir should be evaluated in terms of sediment load and temperature stratification as a 
component of further evaluation of water availability. The ability to maintain a "cold water pool" 
and release cooler water in late summer for salmonid migration should be evaluated.” 
Therefore, the scenarios modeled in this study will answer the question: How would water 
temperature conditions in the “cold water pool” in Lake Mendocino influence the upper Russian 
River cold water tailrace (zone/reach) below the reservoir and to what extent downstream?  To 
answer this question, we investigated reservoir conditions at different storage levels during 2015 
(dry year) and 2019 (wet year) water years.  
 
1.1 Highlights  

 
● A machine learning modeling approach has been developed to estimate stream and 
reservoir water temperatures that influence the quality and extent of salmonid habitat within the 
upper Russian River. 
● The main objective of this study is to gain a better understanding of reservoir operation 
effects on cold water pool storage in Lake Mendocino and associated water temperatures in the 
upper mainstem Russian River during summer and fall.  
● The modeling results demonstrate benefits of higher reservoir storage levels to 
maintaining cooler water temperatures during the juvenile steelhead trout summer rearing 
season through the fall adult Chinook salmon migration period. 
 
1.2 Investigations and work 
 
Description (background, state-of-the-art, applicability to FIRO) 
 



Many modeling techniques based on physical modeling have been developed to characterize 
the current and future states of hydrologic systems. Sometimes, their practical applications are 
limited by the lack of required data and the expense of data acquisition. To overcome these 
limitations, hydrologists have used data driven modeling based on machine learning approach 
as an alternative to physically based models (Ticlavilca and McKee 2011, Ticlavilca et al. 2013, 
Maslova et al. 2016). Machine learning models are characterized by their ability to capture the 
underlying physics of the system simply by examination of the measured system inputs and 
outputs and their interactions.  In this study, a machine learning model based on Deep Learning 
(DL) approach is applied.  
 
The DL modeling approach considers the complex interactions between local climate, reservoir 
operation, reservoir water temperatures and associated water temperatures in the upper 
mainstem Russian River. The DL model consists of Input Layers, Hidden Layers and Output 
Layers. The hidden layers consist of a specific number of nodes that transform the data and 
enable statistical interactions using activations functions between the inputs and outputs of the 
system. The influences of the interactions are propagated layer-by-layer to the final Output 
Layer. 
 
During the late fall, winter, and early spring, water stored in Lake Mendocino remains well 
mixed, and water released from the reservoir is well oxygenated. In addition, atmospheric 
conditions and tributary input help to maintain DO levels at or near saturation. However, 
beginning in May of most years, DO levels in the water released below the reservoir begins to 
decrease. This continues through the summer and early fall until the reservoir "turns over" and 
the process starts anew. The general pattern follows the development and depletion of the cold 
water pool in Lake Mendocino. Lake Mendocino has one release point at the bottom of the 
reservoir where the water typically remains colder than surface temperatures until mixing of the 
stratified water layers occurs in late summer/early fall. 
 
Figure 1 and Figure 2 show the Lake Mendocino daily water temperature at different depths for 
2015 and 2019 respectively. Figure 3 shows the temperature logger locations along the Upper 
Russian River. 
 
In this study, four data sets were analyzed in Lake Mendocino: 
 
1) Lake Mendocino Water Temperature, Surface 
2) Lake Mendocino Water Temperature, 10 feet – 20 feet Average: These data correspond to 

the average of water temperatures at two depths: 10 feet and 20 feet. 
3) Lake Mendocino Water Temperature, 40 feet - 80 feet: These data correspond to the 

average of water temperatures at 4 depths: 40 feet, 50 feet, 60 feet, 70 feet and 80 feet. 
4) Lake Mendocino Water Temperature, Bottom. 
 



 
Figure 1. Daily Lake Mendocino Water Temperature at Different Depths, 2015. 
 

 
Figure 2. Daily Lake Mendocino Water Temperature at Different Depths, 2019. 
 



 
Figure 3. Upper Russian River Water Temperature Logger Locations. 
 
The modeling approach consist of three machine learning sub-models. The first sub-model 
(sub-model 1) estimates reservoir water temperature at the surface and 10 feet – 20 feet 
average. The second sub-model (sub-model 2) takes the outputs of sub-model 1 (reservoir 
water temperature at 10 feet – 20 feet average) and reservoir storage data as inputs in order to 
estimate reservoir water temperatures at the cold water pool zone of Lake Mendocino (40 feet – 
80 feet average and bottom). The third model (sub-model 3) takes the outputs of sub-model 2, 
reservoir storage, reservoir releases and streamflow data in order to estimate water 
temperatures at five different locations along the upper mainstem Russian River. Table 1 
summarizes the inputs and outputs of the modeling approach. 
 



Table 1. Inputs and Outputs of the Modeling Approach. 

 
 
Each input described in Table 1 consist of the variables themselves at any day “d”, and days 
prior to day “d” (time lag). The total number of days prior to day “d” and DL model parameters 
(i.e. hidden layers, number of nodes per layer) were selected by a trial and error process. The 
statistics used for the selection of the optimal model is the root mean square error (RMSE). The 
best model was the one with the minimum RMSE corresponding to the testing phase.  
 
In this study, two years are evaluated: 1) 2015 representing a critical dry year, and 2) 2019, 
representing a wet year. However, this study is dealing with relatively small dataset (daily 
observations from 2015 to 2019 for some months of summer and fall). It can result to a potential 
problem of overfitting. Overfitting is when the model performs very well on the training dataset, 
but the performance decreases significantly when the model is applied to a new dataset (test 
phase). It can lead to a wrong estimation of potential scenarios. Therefore, to minimize 
overfitting, the training and testing data sets are: 
 
● 2015 Scenarios: Training dataset: 2016, 2017, 2018 and 2019, Testing dataset: 2015 
● 2019 Scenarios: Training dataset: 2015, 2016, 2017 and 2018, Testing dataset: 2019 

 
Lake Mendocino storage scenarios (Figure 4) for 2015 are:  
 
● Scenario 0: This scenario is the baseline scenario with the 2015 observed Lake Mendocino 

storage and 2015 water and climate conditions (i.e. streamflow and temperature in the 
Westfork Russian River, air temperatures, reservoir releases and streamflow in the Upper 
Russian River) from May 20 to October 26. 

● Scenario 1: Lake Mendocino storage increases by 10% on May 20. 
● Scenario 2: Lake Mendocino storage increases by 20% on May 20. 



● Scenario 3: Lake Mendocino storage increases by 30% on May 20. 
● Scenario 4: Lake Mendocino storage increases by 40% on May 20. 
● Scenario 5: Lake Mendocino storage increases by 50% on May 20. 
● Scenario 6: Lake Mendocino storage increases by 60% on May 20. 
● Scenario 7: Lake Mendocino storage increases by 70% on May 20. 
● Scenario 8: Lake Mendocino storage increases by 80% on May 20. 
● Scenario 9: Lake Mendocino storage increases by 90% on May 20 (110,742 acre-feet). It is 

approx. at full capacity (111,000 acre-feet). 
 

 
Figure 4. 2015 Lake Mendocino Storage Scenarios. 
 
Lake Mendocino storage scenarios (Figure 5) for 2019 are: 
 
● Scenario 0: This scenario is the baseline scenario with the 2019 observed Lake Mendocino 

storage and 2019 water and climate conditions (i.e. streamflow and temperature in the 
Westfork Russian River, air temperatures, reservoir releases and streamflow in the Upper 
Russian River) from July 18 to October 29. 

● Scenario 1: This scenario is when the storage of Lake Mendocino starts at full capacity 
(111,000 AF) on July 18. 

● Scenario 2: This scenario is when the storage of Lake Mendocino starts at 99,900 SF (Full 
capacity reduced by 10%) on July 18.  

● Scenario 3: This scenario is when the storage of Lake Mendocino starts at 88,800 SF (Full 
capacity reduced by 20%) on July 18.  

● Scenario 4: This scenario is when the storage of Lake Mendocino starts at 77,700 SF (Full 
capacity reduced by 30%) on July 18.  

● Scenario 5: This scenario is when the storage of Lake Mendocino starts at 66,600 SF (Full 
capacity reduced by 40%) on July 18. 



● Scenario 6: This scenario is when the storage of Lake Mendocino starts at 55,500 SF (Full 
capacity reduced by 50%) on July 18. 
 

 
Figure 5. 2019 Lake Mendocino Storage Scenarios. 
 
1. Results 
 
Table 2. Number of days for each input of the model. 

 
Table 2 shows the number of days for each input of the model. We can see that the DL model 
needs just 1 previous day as inputs for the 2019 test, while the DL model needs 5 previous days 
as inputs for the 2015 test.  
 



3.1. Model Performance 
 

Figure 6. Observed (black dots) vs simulated (black dashed lines) water temperatures and Root 
Mean Square Error (RMSE) (2015 Testing Phase) of the Lake Mendocino water temperatures 
at depths:  a) 40 feet – 80 feet Average, and b) Bottom. 

 

 
Figure 7. Observed (black dots) vs simulated (black dashed lines) water temperatures and Root 
Mean Square Error (RMSE) (2019 Testing Phase) of the Lake Mendocino water temperatures 
at depths:  a) 40 feet – 80 feet Average, and b) Bottom. 



 
 
Figure 8. Observed (black dots) vs simulated (black dashed lines) water temperatures and Root 
Mean Square Error (RMSE) (2015 Testing Phase) of the Upper Russian River water 
temperatures at:  a) MRC, b) Burke Hill, c) USGS Hopland, d) Old Hopland and e) Bradford 



 
 

Figure 9. Observed (black dots) vs simulated (black dashed lines) water temperatures and Root 
Mean Square Error (RMSE) (2019 Testing Phase) of the Upper Russian River water 
temperatures at:  a) MRC, b) Burke Hill, c) USGS Hopland, d) Old Hopland and e) Bradford 
 
 
 



Figures 6-9 show a very good overall test performance of the DL modeling approach with low 
RMSE values than ranges from 0.33 °C to 1.35 °C.  There are some months in which the 
performance of the model needs to be improved (e.g. Figures 6, 7a, 8a and 9a) and it might be 
due to the relatively small training data set.  

 
3.2 Scenario Modeling 

 

 
Figure 10. Scenarios for the 2015 Lake Mendocino water temperatures at depths:  a) 40 feet -
80 feet Average, and b) Bottom.  
 

 
Figure 11. Scenarios for the 2019 Lake Mendocino water temperatures at depths:  a) 40 feet -
80 feet Average, and b) Bottom.  

 



 
Figure 12. Scenarios for the 2015 Upper Russian River water temperatures at:  a) MRC, b) 
Burke Hill, c) USGS Hopland, d) Old Hopland and e) Bradford 

 



 
Figure 13. Scenarios for the 2019 Upper Russian River water temperatures at:  a) MRC, b) 
Burke Hill, c) USGS Hopland, d) Old Hopland and e) Bradford. 
 
Figures 10-13 show results for the 2015 and 2019 scenarios. In general, we can see that the 
temperatures at the cold water zone of the reservoir and Upper Russian River tend to be lower 
for the scenarios with higher reservoir storage levels (purple and blue solid lines). On the other 



hand, the temperatures at the cold water zone of the reservoir and Upper Russian River tend to 
be higher for the scenarios with lower reservoir storage levels (dark red and red solid lines). 
 
4.  Conclusions and recommendations 
 
The modeling results demonstrate benefits of higher reservoir storage levels to maintaining 
cooler water temperatures during the juvenile steelhead trout summer rearing season through 
the fall adult Chinook salmon migration period. 
 
 
5. Status and Next Steps 
 

NOAA Fisheries continues its efforts to monitor stream temperature in the upper Russian River 
and water temperature at different depths in Lake Mendocino during summer through fall 
2020.  These new oncoming data will provide valuable information to improve the machine 
learning modeling approach. 

Although the overall performance of the model is good, there are months in which the 
performance of the model needs to be improved. Therefore, NOAA Fisheries will perform the 
additional analysis: 
 
● Selection of the number of lag days for different months or seasons. 
● Perform additional training and validation process (e.g. cross-validation) 
● Perform a sensitivity analysis to find the most relevant inputs of the model for different 

months or seasons. 
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