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Appendix A – Water Resources 

Engineering  

A.1 Hydrologic Engineering Management Plan (HEMP)  

Efforts to improve the coordinated operations of Oroville (ORO) and New Bullards Bar (NBB) dams 

formally began in 2006 with the Forecast-Coordinated Operations (F-CO) Program.  That program has 

been tremendously successful in developing a common operating picture for reservoir operators, 

improving the observation network, and integrating single-value and, more recently, ensemble 

streamflow forecasts into the coordinated decisions process. 

The Forecast-Informed Reservoir Operations (FIRO) program for the Yuba-Feather system is an 

extension of the F-CO effort and leverages the experience of FIRO efforts for Lake Mendocino and Prado 

Dam.  The FIRO effort introduces research to improve forecasts and formally integrates streamflow 

forecasts into the water management decision process (Water Control Plan for the US Army Corps of 

Engineers (USACE) or Section 7 dams).  An inter-agency inter-disciplinary steering committee (SC) was 

formed for the Yuba-Feather FIRO Project in June 2019. 

The objective of this Hydrologic Engineering Management Plan (HEMP) is to identify through appropriate 

detailed technical analyses and other considerations candidate FIRO strategies for ORO and NBB dams, 

along with how they might be implemented in real-time operation by USACE, State Water Project (SWP) 

and Yuba Water Agency (YWA). A second HEMP will be developed to develop and manage system 

operations that meet the objectives of the F-CO Program.   

The California Department of Water Resources (DWR) State Water Project (SWP) completed a 

Comprehensive Needs Assessment (CNA) for Oroville Dam resulting from the 2017 Oroville Dam spillway 

incident.  Information and recommendations from this assessment have been integrated into this 

document. 

YWA is in the process of adding a new water control structure to NBB Dam that will dramatically improve 

the capacity to release stored water more quickly and at lower storage levels.  This analysis assumes the 

conditions associated with this completed construction project. 

This HEMP is managed by the Yuba-Feather FIRO SC. To be consistent with USACE guidance for conduct 

of similar technical studies the SC prepared this HEMP as …a technical outline of the hydrologic 

engineering studies necessary to formulate a solution to a water resources problem (Engineering 

Pamphlet 1110-2-9).  

 

This HEMP includes the following: 

1. Statement of objective and overview of technical study process to provide information needed for 

this assessment. 

2. Identification of tasks to be completed for the technical analysis. (Table A-1). 

3. Identification of candidate FIRO alternatives to be analyzed. (Table A-2). 

4. Specification of requirements for all FIRO alternatives that will be considered. (Table A-3). 
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5. Identification of hard criteria as well as project and system-wide considerations. (Tables A-4, A-5, 

A-6). 

6. Identification of initial tentative performance metrics for FIRO alternative evaluation. (Table A-7). 

7. Identification of the project team members and their roles and responsibilities for conducting, 

reviewing, and approving of the hydrologic engineering study. (Tables A-8, A-9, A-10). 

8. Risks to the success of this study and mitigation actions are shown in Table A-11. 

Objective of Technical Analysis, Overview of Process, and Tasks to be 

Completed  

The objective of the hydrologic engineering study described herein is to identify and evaluate FIRO 

alternatives for ORO and NBB dams in a systematic, defendable, repeatable manner, thus providing 

information to the SC so that it may identify the best FIRO strategy for NBB Dam. 

The process used to meet the hydrologic engineering study objective is a “nominate-simulate-evaluate-

iterate” process, consistent with the process used commonly by USACE for water resources planning 

studies. Tasks in this process, as applied for technical analyses to support the ORO Dam CAN and the 

NBB Dam FIRO Viability Assessment, and include the following: 

1. A set of feasibility criteria and performance metrics is developed for assessing and comparing 

FIRO alternatives. This set will be applied to all alternatives, thereby permitting the project 

delivery team (PDT) to compare and rank alternatives for consideration by the SC. 

2. A set of alternative FIRO strategies is nominated by the PDT. The strategies are screened to 

ensure they meet specified requirements, which are described below. 

3. Performance of the river-reservoir system with each FIRO strategy is simulated using a common 

set of meteorological and hydrological conditions.  HEC-ResSim more likely will act as the 

“gatekeeper” for all alternatives to ensure that the physical constraints and attributes of the 

system are consistently applied. 

4. Simulation results are used to evaluate the viability and performance of each strategy. The 

evaluation uses metrics identified in Task 1, comparing each alternative to performance for the 

without-project (baseline) condition, which is operation following the water control plan (WCP) 

included in the current water control manual (WCM). If results of the evaluation inform 

refinements to FIRO strategies, the simulation and evaluation tasks are repeated with enhanced 

strategies to the extent that resources allow. 

5. The PDT uses the technical analysis results to rank the alternatives and submits the rankings to 

the SC for consideration. 

 

These tasks are described in more detail in Table A-1. Major tasks are listed in column 1 and subtasks in 

column 3. 

 

Major Task 
(1) 

Description 
(2) 

Subtasks 
(3) 
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Task 1. Select 
performance 
metrics 

Both quantitative and 
qualitative measures of 
performance will be 
identified. Methods of 
computation of 

quantitative measures 
will be described.  

Task 1.1. With appropriate input from subject 
matter experts, formulate candidate set of 
quantitative and qualitative measures of 
performance.  Define methods for assessing 
these for typical FIRO strategies. Screen set to 

select feasible metrics for ALL likely alternatives 
to permit objective comparison of strategies. 
Prepare technical memo. Submit to SC for review. 
Task 1.2. Receive comments from SC. Revise 
selected set of performance metrics as required. 
Task 1.3. If necessary, design, develop, and test 
software applications (scripts, spreadsheets, etc.) 
to apply selected metrics. 

Task 2. 

Nominate/form
ulate 
alternative 
FIRO 
strategies that 
will be 
considered 

Each alternative FIRO 

strategy to be 
considered will be 
identified and described, 
along with the method 
by which performance 
with the strategy will be 
evaluated. 

Task 2.1. With appropriate input from subject 

matter experts, formulate candidate set of FIRO 
strategies to be considered. Describe each 
strategy in memo, submit proposed list/memo to 
SC for approval. 
Task 2.2. Receive comments from SC and revise 
list as appropriate. Get SC agreement to proceed 
with comparison. 
Task 2.3. Identify software applications that will 
be used to model FIRO strategies. 

Task 3.  
Side studies 

Identify, conduct, 
document, and 
incorporate outcomes of 
“side studies” that affect 
the simulation and 
evaluation of 
alternatives. 

Task 3.1. Identify any additional “side studies” 
that must be completed to provide information 
required for simulation. Details of side studies will 
be identified in this subtask, with scope of work 
and schedule submitted to SC for approval. 
Task 3.2. Undertake and complete side studies, 
as approved by SC. Document findings. 
Incorporate findings in selected FIRO strategy 
models or procedures. 

Task 4. 
Simulate 
performance 
with each 
alternative 

Each alternative FIRO 
strategy will be 
simulated with the HEC-
ResSim model with a 
consistent set of 
hydrologic boundary 
conditions and system 
constraints (identified in 
Table 3). 

Task 4.1. Considering all FIRO strategies to be 
evaluated, identify boundary conditions and initial 
states of the system to be considered in 
simulation for comparison. Document.  
Task 4.2. Simulate performance of ORO and 
NBB dams with candidate strategies. Prepare 
technical memo describing application of each 
strategy. Prepare database of results (for use in 
Task 5). 

Task 5. Using 

results of 
simulation, 
evaluate each 
alternative in 
terms of 
identified 

Each alternative FIRO 

strategy will be analyzed 
and the appropriate 
performance metric 
statistics computed. 

Task 5.1. Using database of results from the 

HEC-ResSim simulation of each FIRO strategy 
(from Task 4.2) apply software applications 
(scripts, spreadsheets, etc.) from Task 1.3 to 
compute performance metrics for each strategy. 
Task 5.2. Revise FIRO strategies and 
performance metrics as necessary to ensure fair, 
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performance 
metrics 

repeatable comparisons. This subtask 
acknowledges initial uncertainty about 
compatibility of strategies and metrics. 
Task 5.3. Document results of evaluation in 
technical memo. 

Task 6. 
Compare the 
alternatives by 
comparing the 
metrics 

Each alternative FIRO 
strategy evaluation will 
be compared against 
the baseline and against 
each other. 

Task 6.1. Using results from Task 5, prepare 
charts, tables, etc. to compare performance of 
strategies. Prepare technical memo with this 
information and submit to SC for information. 
Task 6.2. Refine strategies if evaluation and 
comparison expose opportunities for “quick 
gains” through minor adjustments to strategies. 
Repeat subtasks Task 4.2 through Task 5.1 with 
revised results. 

Task 6.3. Prepare final technical memo on 
simulation, evaluation, and comparison. Submit 
for SC review. Receive SC comments and revise 
technical memo as needed. 

Task 7. Brief 
SC on findings 
and facilitate 
the selection 
of a preferred 

approaches to 
be refined in 
the FVA 

Each alternative FIRO 
strategy comparison will 
be scrutinized, a 
preferred approaches 
and refinements for the 

FVA identified and 
documented and 
presented to the SC. 

Task 7.1. Using results of comparison from Task 
6, rank alternatives considering individual metrics 
from Task 1. Document findings. 
Task 7.2. Provide comparisons and ranking to 
SC. 

Task 7.3.  Document recommended refinements 
for the FVA process. 

Table A-1.  Tasks and Subtasks to be Completed for Hydrologic Engineering Study of FIRO Strategies 

FIRO Alternatives to be Evaluated 

Selection of candidate FIRO alternatives has been completed by the Water Resources Engineering (WRE) 

Team (Task 2).  These candidate alternatives were delivered to the Corps WCM Update Team and will be 

evaluated through the procedures defined in this document.  The existing WCM operations for both ORO 

and NBB will also be evaluated to establish the performance baseline. Table A-2 shows the list of WCP 

alternatives to be evaluated. 

ID Dam Alt Alt Description Operation Principle 

1 ORO EO Existing Operations Exiting WCP from current WCM. 

2 ORO PresFcs

t_1 

Use best-estimate forecast 

volumes to inform guide curve 
TOC computation and inflow-
based releases. 

Relies on an elevation-based guide 

curve that is computed based on 
forecast inflow volumes.  When in the 
flood control pool, intent is to 
evacuate the storage in a controlled 
manner to reduce downstream peak 
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flows.  Stepped releases are 
proposed. 

3 ORO IterFcst
_1 

Use ensemble streamflow 
forecast members to 
determine a release based on 

an iterative process to 
maintain the same dam risk 
profile as current operations. 

Identify a “minimally changed 
release” through the flood event.  
This release (or pattern) is identified 

as the maximum release that is 
needed to balance the use of the 
flood pool but not result in adverse 
dam safety concerns. The operation 
seeks to answer the question, what is 
the release needed to make it 
through this event safely? Use the 
forecast information, and the 
associated uncertainty to identify the 

release. 

4 ORO EFO Ensemble Forecast Operations 
(EFO) Model using the full 
range of reservoir storage. 

Manages risk of exceeding a defined 
critical storage threshold using a 
developed risk curve and ensemble 
streamflow forecasts.  Full range of 
storage is available for release 
decisions.   

5 ORO EFO 
Hybrid 

Hybrid EFO Model limited to a 
defined FIRO Space. 

Manages the risk of exceeding a 
defined critical storage threshold 

using a developed risk curve and 
ensemble streamflow forecasts.  FIRO 
release decisions limited to the define 
FIRO Space. 

6 NBB EO Existing Operations Existing WCP from current WCM. 

7 NBB FIRO 
GC 

FIRO Guide Curve.  FIRO for 
flood control and water supply 
using a forecast-based guide 
curve to specify drawdown in 

advance of flood events and 
conditional storage of water in 
the gross pool when forecast 
is dry. 

Evacuate volume above FIRO guide 
curve over less than one day time 
window. 

Increases storage utilization to 

mitigate high downstream flood 
releases. 

8 NBB FIRO 
RS 

FIRO Release Schedule.  FIRO 
for flood control using a 
forecast-based release 
schedule to specify drawdown 
in advance of flood events. 

Evacuate conservation space to 
absorb forecast event, reducing peak 
releases and peak storage in NBB. 
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9 NBB EFO Ensemble Forecast Operations 
(EFO) Model using the full 
range of reservoir storage. 

Manages risk of exceeding a defined 
critical storage threshold using a 
developed risk curve and ensemble 
streamflow forecasts.  Full range of 
storage is available for release 

decisions.   

10 NBB EFO 
Hybrid 

Hybrid EFO Model limited to a 
defined FIRO Space. 

Manages the risk of exceeding a 
defined critical storage threshold 
using a developed risk curve and 
ensemble streamflow forecasts.  FIRO 
release decisions limited to the define 
FIRO Space. 

Table A-2.  List of WCP alternatives to be evaluated.  

Requirements of all candidate strategies are shown in Table A-3. Tables A-4, A-5, and A-6 show 

additional constraints and objectives that should be met by all the alternatives.  The operational 

considerations in Tables A-5 and A-6 are used to create the evaluation metrics provided in Table A-7. 

ID Description 

1 

The candidate FIRO strategy must satisfy all relevant USACE engineering regulations 
(ERs), including, but not limited to, the following: 

● ER 1105-2-100 Planning Guidance Notebook 

● ER 1105-2-101 Risk Assessment for Flood Risk Management Studies 

● ER 1110-2-240 Water Control Management 

● ER 1110-2-1156 Safety of Dams Policy and Procedures 

● ER 1110-2-1941 Drought Contingency Plans 
● EM 1110-2-3600 Management of Water Control Systems 

● ER 1110-2-8156 Engineering and Design Preparation of Water Control Manuals 

● EM 1120-2-1420 Engineering Requirements for Reservoirs 

2 

The analytical tools required for implementation of the candidate FIRO strategy must be 
compatible with the USACE’s Corps Water Management System (CWMS) software. In 
addition, results of any analyses completed with software not currently certified for use 
by USACE must be demonstrated to produce results consistent with USACE software 

results. 

3 

Streamflow forecasts used by the candidate FIRO strategy must be those provided by 
the California-Nevada River Forecast Center (CNRFC) of the National Weather Service. 
Simulated streamflow forecasts must be consistent with the skill characteristics of those 
issued by the CNRFC. As appropriate for the alternative, the forecast used can be 
ensemble and/or single value. 

4 
The FIRO strategy must satisfy the hard (inviolable) operation constraints shown in Table 
2. 

5 
The FIRO strategy should represent, and to the extent possible, meet the operation 

objectives shown in Tables 3 and 4. 
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6 
Software development needed to implement the FIRO alternative must be limited for the 
Viability Assessment, as the objective is to select from amongst a set of readily available 
(or nearly so) strategies. 

7 Simulations should be computed at an hourly time step. 

Table A-3. Requirements of all alternative WCP strategies 

 

ID Limiting 
Condition Description 

1 

Satisfy ORO 
Water Control 
Manual Flood 
Control Diagram 

Meet all specific requirements stated on current Flood Control 
Diagram 

2 

Satisfy ORO 
Water Control 

Manual 
Emergency 
Spillway Release 
Diagram (ESRD) 

Meet all specific requirements stated on current Emergency Spillway 
Release Diagram (ESRD) 

3 

Satisfy NBB 
Water Control 
Manual Flood 
Control Diagram 

Meet all specific requirements stated on current Flood Control 
Diagram 

4 

Satisfy NBB 

Water Control 
Manual 
Emergency 
Spillway Release 
Diagram (ESRD) 

Meet all specific requirements stated on current Emergency Spillway 

Release Diagram (ESRD) 

5 
Do not assume 
Marysville Dam 
is in place 

The 1972 WCM operation assumes storage is available in Marysville 
Reservoir. Marysville Reservoir was never built. 

6 

Satisfy release 

rate of change 
constraints 
associated with 
increases and 
decreases 

As documented 

7 

Include function 
of new NBB 
secondary 
spillway 

The FIRO alternatives must incorporate the function of the new NBB 
secondary spillway  
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8 

Do not require 
other than 
currently 
available 
streamflow 

forecasts 

CNRFC deterministic and ensemble streamflow forecasts are available 
up to 4 times per day during major runoff events.  For evaluation 
purposes, forecast updates will be once per day. 

Table A-4. Hard (Inviolable) Operational Constraints that Must be Satisfied by All FIRO Strategies 

 

ID 
Operational 

Consideration  Description 

1 

Reduce the 
frequency of 
critical release 
exceedance from 

ORO and NBB 

Alternative should decrease the frequency of critical releases from 
both dams 

2 

Reduce the 
frequency of ORO 
releases that result 
in more than 
180,000 cfs in the 
Feather River at 
Yuba City 

Maximum F-CO flow target for ORO 

3 

Reduce the 

frequency of NBB 
releases that result 
in more than 
180,000 cfs in the 
Yuba River at 
Marysville 

Maximum F-CO flow target for NBB 

4 

Reduce the 
frequency of 
releases from ORO 

and NBB that 
result in more than 
300,000 cfs in the 
Feather below 
Yuba City and 
320,000 cfs in the 
Feather River 
below the Bear 
River. 

Combined F-CO flow targets for ORO and NBB 
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5 
Avoid negative 
impacts to spring 
refill 

Alternatives should not reduce the ability of ORO and NBB to meet 
water supply delivery objectives 

6 

Avoid the use of 
the ORO 

emergency 
spillway 

Operational objective for dam safety 

7 

Avoid negative 
impacts on 
hydropower 
generation 

Hydropower production should be maintained or possibly enhanced 

8 
End of flood 
season storage 

Consider the effect of FIRO operation on storage at the end of the 
flood season (through the end of May). 

Table A-5. Operational Considerations that Should be Evaluated in the Hydrologic Engineering Study. 

 

ID 

Operational 

Consideration  Description 

1 

Implementation of 
F-CO of Lake 
Oroville and NBB 
Reservoir  

Consider and support the existing YF F-CO program. 

 

2 

Operational 
resiliency 

The FIRO alternative should be resilient to a wide range of 
hydrologic events within the watershed. For example, the operation 
should be resilient to a range of storm-centering and events of key 
frequencies occurring within the Yuba and Feather watersheds. 

Table A-6. System-Wide Operational Considerations that Should be Evaluated in the Hydrologic Engineering Study. 

Metrics for Evaluating Viability and Efficiency of Alternatives 

The efficiency of FIRO will be evaluated with a set of measurable statistics (Task 1). These will be used in 

the same manner (to the maximum extent possible) to assess each alternative objectively. An initial list 

of metrics and the manner of computing or calculating each is shown in Table A-7. 

 

ID 
Metric 

Description Category Likely Method of Computation  

M1 Flood Season 
maximum 
discharge 
frequency from 
ORO Dam 

Flood risk 
management 

Frequency curve.  See Simulation Plan.  
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M2 Flood Season 
maximum pool 
elevation 
frequency 
function of ORO 

Dam 

Flood risk 
management   

Frequency curve.  See Simulation Plan. 

M3 Flood Season 
maximum 
discharge 
frequency from 
NBB Dam 

Flood risk 
management 

Frequency curve.  See Simulation Plan.  

M4 Flood Season 
maximum pool 
elevation 

frequency 
function of NBB 
Dam 

Flood risk 
management   

Frequency curve.  See Simulation Plan. 

M5 Flood Season 
maximum flow-
frequency curves 
at key 
downstream 
locations 

Flood risk 
management   

  

Frequency curve.  See Simulation Plan. CVHS 
frequency analysis. Key downstream locations are 
Yuba River at Marysville, Feather River at Yuba City, 
Yuba and Feather River Confluence, and Feather 
River near Nicolaus. 

M6 ORO Reservoir 
storage at the end 
of Flood Season 
(spring refill) 

Water supply Reservoir routing. See Simulation Plan.  Include 
detailed metrics on potentially the following: 
Changes in reservoir storage levels 

M7 NBB Reservoir 
storage at the end 
of Flood Season 
(spring refill) 

Water supply Reservoir routing. See Simulation Plan.  Include 
detailed metrics on potentially the following: 
Changes in reservoir storage levels 

M8 ORO Hydropower 

production 

Hydropower 

management 

See Simulation Plan. Changes in monthly and 

annual megawatt production output frequency 
curve. 

M9 NBB Hydropower 
production 

Hydropower 
management 

See Simulation Plan. Changes in monthly and 
annual megawatt production output frequency 
curve. 

Table A-7. List of Metrics for Evaluation of WCP Alternatives (listed in Table A-2). 

Bookend Analysis 

To better understand the maximum benefit of forecasts, all non-baseline alternatives will be configured 

and run with full foresight of future streamflow conditions for the full lead time of the forecasts utilized 

(perfect forecasts).   
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The “bookends” will be established by the baseline alternative and the results of the perfect forecast 

simulations for the FIRO alternatives for each dam.  The current position between the two “bookends” 

will be established through the evaluation of each non-baseline alternative in Table A-2 using currently 

available forecasts. 

Project Delivery Team Members and their Roles 

The PDT for evaluation of FIRO alternatives includes subject matter experts who will complete the 

analyses described herein, report on the findings and understandings, and recommendations in memo 

form to the YF FIRO SC.  This work effort is led by the YF FIRO PVA Water Resources Engineering Team.  

PDT members are identified in Table A-8. 

--------------------------------------------------------------------------------------------------------------- 

● Yuba-Feather FIRO steering committee 

● SWP technical staff and consultants (HDR) 

● YWA technical staff and consultants (MBK) 

● USACE Headquarters staff (HQ) 

● USACE Engineering Research and Development Center (ERDC) staff 

● USACE, South Pacific Division (SPD) staff 

● USACE, Sacramento District (SPK) staff 

● Center for Western Weather and Water Extremes, Scripps Institution of Oceanography 

at University of California, San Diego.  Includes Robert K. Hartman Consulting Services 

(RKHCS) and Sonoma Water staff under contract to support FIRO efforts. 

--------------------------------------------------------------------------------------------------------------------- 

Table A-8. New Bullards Bar Dam FIRO Alternatives Evaluation Technical Analysis PDT Members 

 

The PDT members have one of four roles, consistent with established project management planning, as 

shown in Table A-9. These roles vary by hydrologic engineering task. Table A-10 shows roles assigned to 

PDT members for the analysis described herein. 

 

ID Role Description of Duties 

R Responsible Responsible for completing the analyses described herein. 

A Accountable 
Answerable for correct and thorough completion of task; ensures 
requirements are met; delegates work to those responsible. 

C Consulted 
As SMEs, offer opinions through two-way communication with those 
responsible and accountable, about conduct of analyses. 

I Informed Keep up to date on progress through two-way communication. 

Table A-9. Project Roles   
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Major Task 

Steering 

Committee 

SWP/YWA 

Tech Staff 

and 

Consultants 

USACE 

HQ 

USACE 

ERDC 

USACE 

SPD 

USACE 

SPK 

CW3E 

Task 1. Select 

performance 

metrics 

I R I C C R R 

Task 2. 

Nominate/formul

ate alternative 

FIRO strategies 

that will be 

considered 

C R I C C R R 

Task 3. 

Side studies 

C R I C C R R 

Task 4. 

Simulate 

performance 

with each 

alternative 

I R I I I C R 

Task 5. Using 

results of 

simulation, 

evaluate each 

alternative in 

terms of 

identified 

performance 

metrics 

I R I I I C R 

Task 6. 

Compare the 

alternatives by 

comparing the 

metrics 

I R I I C C R 

Task 7. Brief SC 

on findings and 

I R I I I R R 
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facilitate the 

selection of a 

preferred 

alternative 

Table A-10. PDT Roles by Task 

 

Schedule for Completion of Technical Analysis 

Figure A-1 shows the schedule for completion of the project tasks.  All work on all tasks will be 

completed by December 31, 2021. 

(To be developed). 

Figure A-1.  Schedule for completion of hydrologic engineering study to recommend FIRO 

strategy for ORO and NBB dams. 

 

Risks to Success of Study 

Risks to the success of this study and mitigation actions are shown in Table A-11. 

Potential Failure Mode Actions PDT can take to Mitigate 

Simulation or evaluation 

software does not function as 
expected. 

Limit analysis to use of software that is readily available 

and has been stress tested. 

Necessary data—including 
hydrological, meteorological, 
water use, vulnerability—are 
not readily available. 

Limit analysis to use of best-available data. 

Key personnel are not available 
to complete tasks. 

Ensure back up staff for all critical tasks. 

Critical path tasks fall behind 

schedule due to unforeseeable 
distractions and disruptions. 

Limit project activities to those that are necessary to satisfy 

objectives. 

PDT disagrees about technical 
analysis procedures. 

Defer to PDT project assignments (see above). 

Nature of alternative FIRO 
strategy prevents evaluation 
with selected metrics. 

Disqualify alternative from further consideration unless 
metrics can be adjusted and applied in uniform manner for 
all alternatives. 
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Table A-11. Project Risks 

 

A.2 Systems Operations Presentation  
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A.3 Simulation Plan 

Memorandum 

Date: Friday, June 02, 2023 

Project Forecast-Informed Reservoir Operations (FIRO) Program  

Subject: 
FVA Simulation Plan 

Situation 
The California Department of Water Resources (DWR) and Yuba Water Agency (YWA) are 

participating in the Yuba-Feather Forecast-Informed Reservoir Operations (FIRO) Program, a 

multi-agency partnership focused on evaluating the viability of FIRO at Oroville and New 

Bullards Bar dams and identifying opportunities for forecast enhancement. Oroville Dam on the 

Feather River is owned and operated by DWR, and New Bullards Bar on the Yuba River is 

owned and operated by YWA. For flood control, the dams are operated separately and as a 

system to avoid exceeding the maximum objective flows in the Feather River below the Yuba 

River and in the Feather River below the Bear River. Flood operation rules for the dams are 

prescribed in each dam’s water control manual (WCM) developed by the U.S. Army Corps of 

Engineers Sacramento District (SPK). 

FIRO is a strategy that leverages advances in forecasting technology to allow greater flexibility 

in reservoir operation and in turn, to potentially enhance flood control and water supply 

benefits. By explicitly considering forecasted inflow in release decision making, operators can 

optimize release timing and magnitude to pass flood flows safely or can store water that would 

normally be released when no significant inflow is forecast. 

Task 
To assess FIRO viability, the water resources engineering (WRE) team will develop and evaluate 

operation alternatives that explicitly include inflow forecasts in release decision making at 

Oroville Dam and New Bullards Bar Dam. Extensive HEC-ResSim model development for the 

Yuba-Feather FIRO Preliminary Viability Assessment (PVA) program has resulted in 

implementation of three operations alternatives for several event simulations.  

Moving forward from the PVA, this document details the simulation plan for the Final Viability 

Assessment (FVA). Taking into consideration lessons learned from the PVA, the proposed 

framework will focus on leveraging the PVA and SPK’s WCM baseline models, placing greater 

emphasis on evaluating alternatives with imperfect forecasts, and evaluating spring events.  
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Implementation overview 
An overview of the alternatives being evaluated in the FVA are detailed in Table A-12. An 

overview of all implementation steps and subsequent actions are detailed in Table A-13. 

I
D 

ORO 
At-Site 

NBB 
At-Site 

System 
Operation 

Description 

1 Existing 
F-CO 

Existing 
F-CO 

Existing F-
CO 

Representation of the current forecast-coordinated 
operations program. The 120/180 rules will be 
removed and set for 180k at Yuba City and 180k at 
Marysville 

3 ID3 FIRO 
Guide 

Curve 

Existing F-
CO 

Pairing of prescriptive alternatives at dams. The 
forecast ensemble is processed to a single inflow 

value (75 percent non-exceedance probability at dam) 
and is used to determine forecast-based top of 
conservation or guide curve and/or release magnitude 
based on pre-defined relationships. Considers forecast 
duration up to seven days. 

4 Hybrid 
EFO 

Hybrid 
EFO 

Existing F-
CO 

Pairing of iterative alternatives at dams. A potential 
release from a dam is evaluated considering each 
forecast ensemble hydrograph. If the tolerable risk of 
a given outcome, such as exceeding a given reservoir 

elevation, is exceeded considering the full ensemble, 
a new release is evaluated. This process is repeated 
until the tolerable risk is not exceeded. Considers 
forecast duration up to 15 days. 

Table A-12. FVA combined alternatives 

 

Steps Actions Responsibility 

Metrics Metrics to be evaluated are 
detailed in the HEMP 

WRE Team 

Pre-processing imperfect forecast data To date, hindcasts are in HEC-
DSS, but HDR is working on the 
configuration into the model 

Forecast volumes, 
NBB GC, 
downstream 
constraints: MBK 
Oroville TOC: 

HDR 
EFO release 
schedules: CW3E 

At-site alternative configuration  Oroville: HDR 
NBB: MBK 

Configure FVA HEC-ResSim model  HDR/MBK 
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Run FVA HEC-ResSim model 
simulations 

 HDR/MBK 

Post-processing model output  HDR/MBK 

Additional sensitivity analysis  HDR 

Table A-13. FVA simulation plan implementation summary 

Metrics to evaluate FVA alternatives 

To compare each alternative, operations with the perfect and imperfect forecasts will be simulated 

with HEC-ResSim and metrics of success in meeting operation objectives will be computed. These 

metrics are detailed in the HEMP. The outputs noted in the “FIRO Checklist” document for the July 

31 handoff will be developed as well. 

Model inputs and set up 

Each alternative will be evaluated using a combined HEC-ResSim model. Performance will be 

evaluated using perfect and imperfect forecasts. A summary of the FVA HEC-ResSim model is 

detailed in Table A-16. 

 

HEC-ResSim Build    3.5 

Starting Point Model 
Name 

YF FIRO BASELINE MODEL.7z 

FVA Model Name YF FIRO FVA MODEL.7z 

Workspace Name YF FIRO FVA MODEL.wksp 

Network Feather-Yuba-Bear_FCO FIRO 

Simulations See Table A-17 

Alternatives See Table A-15 and A-16 

Events See Table A-17 

Table A-14. HEC-ResSim details and configuration summary 

 

A new naming convention will be used for the FVA alternatives. Figure A-2 depicts one potential 

HEC-ResSim simulation alternative naming scheme that would be compatible with all the hydrology, 

event, and physical configurations. This is meant as a possibility for discussion with the WRE 

modeling focus team. Alternately, if alternative variants can be assigned clear numeric identifiers 

that account for structural changes at NBB, the DMP naming scheme can be used. 

To describe operations leveraging the hindcast ensembles, each event will be constructed of multiple 

HEC-ResSim simulations. A simulation will be constructed, executed, and stored for each hindcast 

issuance date (24-hour interval) using forecast products derived only from current and former 
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forecasts.  The simulation on the next date will be initialized with starting storages, releases, and 

guide curves from the previous simulation. Thus, simulation following a “real time” approach will be 

used. 

“Simula
tion 

Set” 

Simulat
ion 

Lookback Start End 

Storages, 
Flows 

Initialized 
From 

All Forecast 
Inputs 

Derived From 

1997 x 
100% 

1996122
112Z 

18Dec1996 
1200 

21Dec1996 
1200 

31Dec1996 
1200 

Guide Curve 
1996122112_Fea
therYuba_hefs_h

ourly.csv 

1997 x 
100% 

1996122
212Z 

19Dec1996 
1200 

22Dec1996 
1200 

01Jan1997 
1200 

1996122112
Z 

1996122212_Fea
therYuba_hefs_h

ourly.csv 

1997 x 

100% 

1996122

312Z 

20Dec1996 

1200 

23Dec1996 

1200 

02Jan1997 

1200 

1996122212

Z 

1996122312_Fea
therYuba_hefs_h

ourly.csv 

1997 x 
100% 

1996122
412Z 

21Dec1996 
1200 

24Dec1996 
1200 

03Jan1997 
1200 

1996122312
Z 

1996122412_Fea
therYuba_hefs_h

ourly.csv 

1997 x 
100% 

1996122
512Z 

22Dec1996 
1200 

25Dec1996 
1200 

04Jan1997 
1200 

1996122412
Z 

1996122512_Fea
therYuba_hefs_h

ourly.csv 

1997 x 

100% 

1996122

612Z 

23Dec1996 

1200 

26Dec1996 

1200 

05Jan1997 

1200 

1996122512

Z 

1996122612_Fea
therYuba_hefs_h

ourly.csv 

1997 x 
100% 

1996122
712Z 

24Dec1996 
1200 

27Dec1996 
1200 

06Jan1997 
1200 

1996122612
Z 

1996122712_Fea
therYuba_hefs_h

ourly.csv 

1997 x 
100% 

1996122
812Z 

25Dec1996 
1200 

28Dec1996 
1200 

07Jan1997 
1200 

1996122712
Z 

1996122812_Fea
therYuba_hefs_h

ourly.csv 

1997 x 

100% 

1996122

912Z 

26Dec1996 

1200 

29Dec1996 

1200 

08Jan1997 

1200 

1996122812

Z 

1996122912_Fea
therYuba_hefs_h

ourly.csv 

1997 x 
100% 

1996123
012Z 

27Dec1996 
1200 

30Dec1996 
1200 

09Jan1997 
1200 

1996122912
Z 

1996123012_Fea
therYuba_hefs_h

ourly.csv 

1997 x 
100% 

1996123
112Z 

28Dec1996 
1200 

31Dec1996 
1200 

10Jan1997 
1200 

1996123012
Z 

1996123112_Fea
therYuba_hefs_h

ourly.csv 
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1997 x 
100% 

1997010
112Z 

29Dec1996 
1200 

01Jan1997 
1200 

11Jan1997 
1200 

1996123112
Z 

1997010112_Fea
therYuba_hefs_h

ourly.csv 

1997 x 
100% 

1997010
212Z 

30Dec1996 
1200 

02Jan1997 
1200 

12Jan1997 
1200 

1997010112
Z 

1997010212_Fea
therYuba_hefs_h

ourly.csv 

1997 x 
100% 

1997010
312Z 

31Dec1996 
1200 

03Jan1997 
1200 

13Jan1997 
1200 

1997010212
Z 

1997010312_Fea
therYuba_hefs_h

ourly.csv 

1997 x 
100% 

1997010
412Z 

01Jan1997 
1200 

04Jan1997 
1200 

14Jan1997 
1200 

1997010312
Z 

1997010412_Fea
therYuba_hefs_h

ourly.csv 

1997 x 
100% 

1997010
512Z 

02Jan1997 
1200 

05Jan1997 
1200 

15Jan1997 
1200 

1997010412
Z 

1997010512_Fea
therYuba_hefs_h

ourly.csv 

1997 x 
100% 

1997010
612Z 

03Jan1997 
1200 

06Jan1997 
1200 

16Jan1997 
1200 

1997010512
Z 

1997010612_Fea
therYuba_hefs_h

ourly.csv 

1997 x 
100% 

1997010
712Z 

04Jan1997 
1200 

07Jan1997 
1200 

17Jan1997 
1200 

1997010612
Z 

1997010712_Fea
therYuba_hefs_h

ourly.csv 

1997 x 
100% 

1997010
812Z 

05Jan1997 
1200 

08Jan1997 
1200 

18Jan1997 
1200 

1997010712
Z 

1997010812_Fea
therYuba_hefs_h

ourly.csv 

1997 x 
100% 

1997010
912Z 

06Jan1997 
1200 

09Jan1997 
1200 

19Jan1997 
1200 

1997010812
Z 

1997010912_Fea
therYuba_hefs_h

ourly.csv 

1997 x 
100% 

1997011
012Z 

07Jan1997 
1200 

10Jan1997 
1200 

20Jan1997 
1200 

1997010912
Z 

1997011012_Fea
therYuba_hefs_h

ourly.csv 

1997 x 
100% 

1997011
112Z 

08Jan1997 
1200 

11Jan1997 
1200 

21Jan1997 
1200 

1997011012
Z 

1997011112_Fea
therYuba_hefs_h

ourly.csv 

1997 x 
100% 

1997011
212Z 

09Jan1997 
1200 

12Jan1997 
1200 

22Jan1997 
1200 

1997011112
Z 

1997011212_Fea
therYuba_hefs_h

ourly.csv 
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Table A-15. Component Simulations of an Example Event Routing with Imperfect Forecasts 

 

 

 

Figure A-2. Example of candidate alternative names for HEC-ResSim modeling 

 

Observed Hydrology and Forecast Hydrology Source IDs: 

● C = CVHS 

● H = HEFS ensemble or ensemble derivative 

● S = HEFS historical simulation 

● O = historical observed 

● W = WCM hydrology 

● SPF1, SPF2, PMF = name of design flood, up to 4 characters (could alternately use “W” 

as water control manual hydrology ID and the collection member ID 000001 for SPF1, 

000002 for SPF2, as in DMP) 

Physical Configuration IDs: 

● A = ARC spillway included 

● E = without ARC spillway (existing physical condition) 

Alternative 
Name 

Observed 
Hydrology 

Forecast 
Hydrology 

Applicable 
Patterns 

Applicable Scale 
Groups (%) 

CC_FV**A CVHS CVHS 1956, 1965, 1986, 

1997, 2006, 2017 

10 - 340 

SS_FV**A HEFS2023 
historical 
simulation 

HEFS2023 
historical 
simulation 

1986, 1995, 1997 1986: 100 - 150 
1997: 84 - 130 
1995: 50 - 190 

SH_FV**A HEFS2023 
historical 
simulation 

HEFS2023 
forecasts 

1986, 1995, 1997 1986: 100 - 150 
1997: 84 - 130 
1995: 50 - 190 
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CH_FV**A CVHS HEFS2023 1986, 1997, 2006, 
2017 

100 

Table A-16. FVA HEC-ResSim alternatives names for consolidated model (winter simulations) 

 

Alternativ

e Name 

Oroville 

Operation
s Set 

NBB 

Operation
s Set 

ARC 

Spillwa
y 

System 

Operation
s 

Alternativ

e ID 

Network 

**_FV01A F-CO 
EventOp 

ID1A With ARC 
Spillway 

Explicit 
system 
Balance 

ID1 Feather-
Yuba-
Bear_FCO 
FIRO 

**_FV03A ID3 ID3A With ARC 
Spillway 

Explicit 
system 
Balance 

ID3 Feather-
Yuba-
Bear_FCO 

FIRO 

**_FV04A ID4 ID4A With ARC 
Spillway 

Explicit 
system 
Balance 

ID4 Feather-
Yuba-
Bear_FCO 
FIRO 

**_FV01E F-CO_FIRO 
Baseline 

F-CO_FIRO 
Baseline 

Without 
ARC 
Spillway 

Explicit 
system 
Balance 

ID1 Feather-
Yuba-
Bear_FCO 
FIRO 

**_FV03E ID3 ID3E Without 
ARC 
Spillway 

Explicit 
system 
Balance 

ID3 Feather-
Yuba-
Bear_FCO 
FIRO 

**_FV04E ID4 ID4E Without 
ARC 
Spillway 

Explicit 
system 
Balance 

ID4 Feather-
Yuba-
Bear_FCO 
FIRO 

Table A-17. FVA HEC-ResSim alternative names for representing with and without ARC 

Spillway configurations 

 
Simulation 

Name 
Dataset Event 

Scale 

Groups 
(%) 

Hydrolog

y Time 
Zone 

Simulati
on 

Lookbac
k 

Simulati

on 
Start 

Simulati

on 
End 

FVA 
Require

ment 

WCM 

Requirem
ent 

1956 CVHS 1956 10 – 340 Pacific 

12 Dec 

1955, 
0000 

15 Dec 

1955, 
0000 

12 Jan 

1956, 
0000 

 X 
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1965 CVHS 1965 10 – 340 Pacific 
12 Dec 
1964, 

0000 

15 Dec 
1964, 

0000 

12 Jan 
1965, 

0000 

 X 

1986 CVHS 1986 
10  

– 340 
Pacific 

04 Feb 

1986, 
0000 

06 Feb 

1986, 
0000 

14 Mar 

1986, 
0400 

 X 

1997 CVHS 1997 10 – 340 Pacific 
18 Dec 
1996, 

0000 

21 Dec 
1996, 

0000 

12 Jan 
1997, 

0000 

 X 

2006 CVHS 2006 100 Pacific 

06 Dec 

2005, 
0400 

08 Dec 

2005, 
0400 

09 Jan 

2006, 
0000 

  

2017 CVHS 2017 100 Pacific 

28 Jan 

2017, 
0400 

01 Feb 

2017, 
0400 

27 Feb 

2017, 
0400 

  

1986 
GEFSv12 
hindcasts 

1986 

100, 102, 
104, 106, 

108, 
110, 120, 

130, 140, 
150 

UTC 
04 Feb 
1986, 

1200 

06 Feb 
1986, 

1200 

14 Mar 
1986, 

1200 

X X 

1997 
GEFSv12 

hindcasts 
1997 

84, 86, 88, 
90, 92, 

94,  

96, 98, 
100, 110, 

120, 130 

UTC 
18 Dec 
1996, 

1200 

21 Dec 
1996, 

1200 

12 Jan 
1997, 

1200 

X X 

Mar1995_1 
GEFSv12 
hindcasts 

Mar19
95 

50, 70, 90, 

100, 110, 
130 

UTC 

27 Feb 

1995, 
1200 

1 Mar 

1995, 
1200 

16 Mar 

1995, 
1200 

X  

Mar1995_2 
GEFSv12 

hindcasts 

Mar19

95’ 

50, 70, 90, 
100, 110, 

130 

UTC 
29 Mar 
1995, 

1200 

31 Mar 
1995, 

1200 

14 Apr 
1995, 

1200 

X  

Mar1995_3 
GEFSv12 
hindcasts 

Mar19
95’’ 

50, 70, 90, 
100, 110, 

130 

UTC 
12 Apr 
1995, 

1200 

14 Apr 
1995, 

1200 

29 Apr 
1995, 

1200 

X  

May1995_1 
GEFSv12 
hindcasts 

May19
95 

70, 90, 

100, 110, 
130, 150, 

170, 190 

UTC 
23 Apr 
1995, 

1200 

25 Apr 
1995, 

1200 

7 May 
1995, 

1200 

X  

May1995_2 
GEFSv12 
hindcasts 

May19
95’ 

70, 90, 

100, 110, 
130, 150, 
170, 190 

UTC 
13 May 
1995, 

1200 

15 May 
1995, 

1200 

27 May 
1995, 

1200 

X  

Table A-18. FVA HEC-ResSim simulations 
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File Description Notes 

Dummy flows (timeseries of 0 values as 
placeholders for modeling with different hydrologic 
boundary conditions) 

This will facilitate switching between 
CVHS and CNRFC model boundary 
conditions within the same model 
network 

CVHS Scaled Simulated Historical Hydrology (2023 

update for Yuba-Feather CVHS hydrology) 

Use latest CVHS hydrology (extended 

during update to annual flow-frequency 
curves) 

CNRFC HEFS 2023 scaled historical simulation 
hydrology 

Use latest scaled simulations; 
derivatives of the ensemble forecasts 
for each forecast date and scaled event 
feed into the following rows 

Oroville Inputs derived from perfect forecast 
− 1-day average inflows 

− 3-day average inflows 
− 5-day average inflows 
− 7-day average inflows 

− FIRO top of conservation timeseries 
− ORO EFO release schedule 

All information needed to specify 
Oroville at-site FIRO releases based on 
ID3 or ID4 for both hydrology datasets 

Oroville Inputs derived from imperfect forecasts 
− 1-day average inflows (75 % NEP) 

− 3-day average inflows (75 % NEP) 
− 5-day average inflows (75 % NEP) 
− 7-day average inflows (75 % NEP) 

− FIRO top of conservation timeseries 
− ORO EFO release schedule 

All information needed to specify 
Oroville at-site FIRO releases based on 

ID3 or ID4 that are derived from the 
ensemble hindcasts 

NBB Inputs derived from perfect forecast 
− FIRO guide curve storage timeseries 

− NBB EFO release schedule 

All information needed to specify NBB 
at-site FIRO releases based on ID3 or 

ID4 for both hydrology datasets 

NBB Inputs derived from imperfect forecasts 
− FIRO guide curve storage timeseries 

− NBB EFO release schedule 

All information needed to specify NBB 
at-site FIRO releases based on ID3 or 
ID4 that are derived from the ensemble 
hindcasts 

Flow Space Inputs derived from perfect forecast 
− difference between Feather at Yuba City 

constraint and forecast local flows 
− difference between Feather below Yuba 

constraint and forecast local flows 

− difference between Feather below Bear 
constraint and forecast local flows 

− difference between Yuba at Marysville 
constraint and forecast local flows 

This may not be necessary, but would 
be a useful check in developing the 
technique for defining downstream 
control flow rules as a function of an 
external variable 
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Flow Space Inputs derived from imperfect forecast 
− difference between Feather at Yuba City 

constraint and forecast local flows 

− difference between Feather below Yuba 
constraint and forecast local flows 

− difference between Feather below Bear 
constraint and forecast local flows 

− difference between Yuba at Marysville 

constraint and forecast local flows 

Stores the “external variable” 
timeseries that incorporates a 
representation of the imperfect forecast 
and the maximum objective flow at the 
control location to integrate imperfect 

flow forecast info into the release 
decisions made for downstream 
constraints. 

WCM Events / PMF 
(if we determine these events need to be added) 

Flow boundary conditions for events 
like the SPF and PMF 

Table A-19. Types of FVA Hydrologic Inputs 

 

File Name from FVA FIRO 
Alternative

s 

Patterns 

DUMMY_flows.dss All All (unscaled) 

NBB_FIRO_space_bounds.dss ID3E, ID3A, 
ID4E, ID4A 

All (does not change 
between magnitudes) 

CVHS_NBB_perfect_forecast_guide_curve.dss ID3E, ID3A 1956, 1965, 1986, 
1997, 2006, 2017 

HEFS_NBB_perfect_forecast_guide_curve_UTC.dss ID3E, ID3A 1986, 1997, Mar1995, 
May1995 

HEFS_NBB_75NEP_forecast_guide_curve_UTC.dss ID3E, ID3A 1986, 1997, Mar1995, 
May1995 

CVHS_FeatherYubaBear_scaled_records_DSS7.dss All 1956, 1965, 1986, 1997 

   

Table A-20. Inventory of FVA Hydrologic Inputs Stored in HEC-ResSim “shared” Directory 

 

File Name from FVA FIRO 
Alternative

s 

Patterns 

DUMMY_flows.dss All All (unscaled) 

NBB_FIRO_space_bounds.dss ID3E, ID3A, 
ID4E, ID4A 

All (does not change 
between magnitudes) 

CVHS_NBB_perfect_forecast_guide_curve.dss ID3E, ID3A 1956, 1965, 1986, 

1997, 2006, 2017 

https://drive.google.com/file/d/1GXtpslb-4TDV44LMfbv76gwqcNCorkDy/view?usp=drive_link
https://drive.google.com/file/d/16ELgCDK5DL5tKXNJxOr5W4tg0X3lV9hh/view?usp=drive_link
https://drive.google.com/file/d/15r77GgFYW3XMoOErZszL3Ul519KXuj-8/view?usp=drive_link
https://drive.google.com/file/d/1GXtpslb-4TDV44LMfbv76gwqcNCorkDy/view?usp=drive_link
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HEFS_NBB_perfect_forecast_guide_curve_UTC.dss ID3E, ID3A 1986, 1997, Mar1995, 
May1995 

HEFS_NBB_75NEP_forecast_guide_curve_UTC.dss ID3E, ID3A 1986, 1997, Mar1995, 
May1995 

CVHS_FeatherYubaBear_scaled_records_DSS7.dss All 1956, 1965, 1986, 1997 

   

Table A-21. Staring conditions 

 

A.4 Scalings of the 1986 Flood Event  
 
The scaling process is described in Section 5.3.2.2 
 
Scale factors applied: 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 130, 140 
 
Each scaling contains: 

• A plot of the four downstream control points 
• A plot of Oroville elevation (top) and releases (bottom) with inflow as the background 

 
Alternatives (ID1E, ID3A, and ID4A) are described in Section 3. 
 

 

 
 
 
 
 
 
 

1986 100% Scaling 
Downstream Control Points 

https://drive.google.com/file/d/16ELgCDK5DL5tKXNJxOr5W4tg0X3lV9hh/view?usp=drive_link
https://drive.google.com/file/d/15r77GgFYW3XMoOErZszL3Ul519KXuj-8/view?usp=drive_link
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1986 100% Scaling 
Oroville 
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1986 100% Scaling 
New Bullards Bar 
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1986 102% Scaling 
Downstream Control Points 
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1986 102% Scaling 
Oroville 
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1986 102% Scaling 
New Bullards Bar 
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1986 104% Scaling 
Downstream Control Points 
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1986 104% Scaling 
Oroville 
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1986 104% Scaling 
New Bullards Bar 
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1986 106% Scaling 
Downstream Control Points 



 45 

 
 

 

 

 

1986 106% Scaling 
Oroville 
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1986 106% Scaling 
New Bullards Bar 
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1986 108% Scaling 
Downstream Control Points 
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1986 108% Scaling 
Oroville 
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1986 108% Scaling 
New Bullards Bar 
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1986 110% Scaling 
Downstream Control Points 
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1986 110% Scaling 
Oroville 
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1986 110% Scaling 
New Bullards Bar 
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1986 112% Scaling 
Downstream Control Points 
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1986 112% Scaling 
Oroville 
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1986 112% Scaling 
New Bullards Bar 
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1986 114% Scaling 
Downstream Control Points 
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1986 114% Scaling 
Oroville 
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1986 114% Scaling 
New Bullards Bar 

 
 

  



 60 

1986 116% Scaling 
Downstream Control Points 
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1986 116% Scaling 
Oroville 
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1986 116% Scaling 
New Bullards Bar 
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1986 118% Scaling 
Downstream Control Points 
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1986 118% Scaling 
Oroville 
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1986 118% Scaling 
New Bullards Bar 
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1986 120% Scaling 
Downstream Control Points 
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1986 120% Scaling 
Oroville 
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1986 120% Scaling 
New Bullards Bar 
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1986 130% Scaling 
Downstream Control Points 
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1986 130% Scaling 
Oroville 
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1986 130% Scaling 
New Bullards Bar 
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1986 140% Scaling 
Downstream Control Points 
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1986 140% Scaling 
Oroville 
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1986 140% Scaling 
New Bullards Bar 

 
 

A.5 Scalings of the 1997 Flood Event  

The scaling process is described in Section 5.3.2.2 
 
Scale factors applied: 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 120, 130 
 
Each scaling contains: 
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• A plot of the four downstream control points 
• A plot of Oroville elevation (top) and releases (bottom) with inflow as the background 

 
Alternatives (ID1E, ID3A, and ID4A) are described in Section 3. 
 
 
 

1997 84% Scaling 
Downstream Control Points 
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1997 84% Scaling 
Oroville 
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1997 84% Scaling 
New Bullards Bar 
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1997 86% Scaling 
Downstream Control Points 
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1997 86% Scaling 
Oroville 
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1997 86% Scaling 
New Bullards Bar 
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1997 88% Scaling 
Downstream Control Points 
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1997 88% Scaling 
Oroville 

 
 

  



 83 

1997 88% Scaling 
New Bullards Bar 

 
  



 84 

1997 90% Scaling 
Downstream Control Points 
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1997 90% Scaling 
Oroville 
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1997 90% Scaling 
New Bullards Bar 
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1997 92% Scaling 
Downstream Control Points 
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1997 92% Scaling 
Oroville 
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1997 92% Scaling 
New Bullards Bar 
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1997 94% Scaling 
Downstream Control Points 
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1997 94% Scaling 
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1997 100% Scaling 
Downstream Control Points 

 

 

  



 100 

1997 100% Scaling 
Oroville 

 

 

  



 101 
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1997 102% Scaling 
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1997 106% Scaling 
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1997 110% Scaling 
Oroville 

 
 

  



 116 

1997 110% Scaling 
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1997 120% Scaling 
Downstream Control Points 
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1997 120% Scaling 
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1997 120% Scaling 
New Bullards Bar 
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1997 130% Scaling 
Downstream Control Points 
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1997 130% Scaling 
Oroville 
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1997 130% Scaling 
New Bullards Bar 

 
 

A.6 Storage Summary Metrics for Oroville and New 

Bullards Bar 

 
1986 scale factors applied: 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 130, 140 
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1997 scale factors applied: 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 120, 130 
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A.7 Benefits Transfer Graphics 
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Process described in Section 4.3 
 
Benefits transfer from reservoir storage to downstream control points demonstrated by reducing 

the target downstream flows in HEC-ResSim. 
 
Only ID3A alternative was evaluated and compared with baseline (ID1E). 
 
 
Graphic provided for 1986 scaled to 100% and 116% and 1997 scaled to 100% and 106%. 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 

 

 
 
 
 

Benefits Transfer 
100% Scaling of 1986 Event 
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Benefits Transfer 
116% Scaling of 1986 Event 
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Benefits Transfer 
100% Scaling of 1997 Event 
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Benefits Transfer 
106% Scaling of 1997 Event 
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Appendix B – Meteorology  

B.1 Precipitation and AR Catalog 

Contributing Author: Chad Hecht, Center for Western Weather and Water Extremes 

An extended (~20-year) catalog of precipitation, atmospheric river characteristics, and forecast 

verification statistics over the Yuba and Feather River watersheds was developed in a 72-hour 

and event accumulation perspective to further the understanding of the mechanisms that lead 

to precipitation and how it is forecast. The two forms of the catalog were developed utilizing 

mean-areal Stage-IV precipitation observations within the HUC-8 boundaries of the Yuba River 

and Feather River (combining the North Fork, East Branch North Fork, & Middle Fork) 

watersheds as the foundation of the catalog while several meteorological and atmospheric river 

related observations (derived from ERA5 Reanalysis and other observations) are provided, such 

as: 

●      Daily Mean IVT Magnitude and Direction 

●      Daily Maximum IVT Magnitude and Direction 

●      Atmospheric River Scale 

●      Time-integrated IVT and Direction 

●      Sierra-barrier Jet 

●      Freezing Level 

Forecast information and statistics are included in conjunction with the observations listed 

above to contextualize and identify systematic sources of error as a function of lead time and 

physical process. Mean-areal quantitative precipitation forecasts from the West-WRF and GEFS 

were calculated for lead-times up to 48 hours identifying days and lead times that exhibited the 

largest and smallest forecast errors. In addition to precipitation forecasts, several variables and 

statistics were calculated from West-WRF data for atmospheric river characteristics, such as 

daily mean and maximum IVT magnitude and direction. The Method for Object-Based 

Diagnostic Evaluation (MODE) tool was utilized to identify landfall position error of atmospheric 

rivers and the role these errors played on the forecast of precipitation.  

In summary, this overarching catalog serves as a meteorological reference for the Yuba and 

Feather River watersheds and the phenomena that can lead to extreme precipitation, 

over/under forecasts, short lead times, etc. The data within this catalog was utilized to perform 

several of the analyses presented in this FVA and will continue to provide information for 

studies and analyses in the future.  
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Table B-1 An example of the information provided within the Yuba Watershed Event Catalog 

showing the top 10 events from 2002 to 2023. 

 

B.2. Evaluation of physical and mesoscale processes 

B.2.1 Heavy precipitation days in the Upper Yuba are driven by ARs 

Contributing Author: Paul Loikith, Portland State University 

Activity: We have characterized storm types and atmospheric patterns associated with and 

those leading up to heavy precipitation days in the Upper Yuba Watershed. Results improve our 

understanding of the atmospheric drivers of heavy precipitation with implications for prediction 

in the watershed. 

Summary of Results: Storm types/atmospheric patterns associated with the five days leading 

to heavy precipitation days in the Upper Yuba Watershed are grouped into clusters using the 

self-organizing map (SOM) method. Figure 1 (left) shows a nine-node SOM of integrated water 

vapor transport (IVT) for all five-day periods ending in a day where the basin-wide mean daily 

accumulated precipitation was above the 90thpercentile of all >=2mm precipitation days (i.e., 

heavy precipitation days) between the months of October and March spanning the years 1980-

2022. To construct the SOM, the daily mean IVT for each heavy precipitation day along with the 

preceding four days was provided as input to the algorithm which then assigned each pentad of 

days to one of the nine nodes (or clusters) such that days with a similar progression of IVT 

characteristics are grouped together. The IVT maps in the nine panels of Figure 1 are 

approximately the composite mean of all the IVT maps for all days assigned to each node. For 

more background on implementing the SOM method in this way see Loikith et al. (2017) and 

Aragon et al. (2020). 
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Figure B-1. (Left) A 9-node SOM of IVT for the five days leading up to a heavy precipitation 

day in the Upper Yuba Watershed. The nodes are referred to by the number above each row. 

The number at the top of each panel in the bottom row is the percent of all extreme 

precipitation days assigned to that node. The bottom row shows the IVT pattern for the day 

recording extreme precipitation which each row above shows the IVT pattern for the days prior. 

The SOM algorithm clusters the entire pentads such that days assigned to Node 1 have a 5-day 

progression like the one shown in the left column. 

All nine nodes depict atmospheric river (AR)-like features with narrow corridors of elevated IVT 

directed at the Upper Yuba Watershed. However, there is a considerable range of IVT strength, 

orientation, and length of the IVT corridors as well as the progression of the pattern in the days 

prior. For example, days assigned to Node 1 (left) are characterized by very high IVT values 

(relative to the other nodes) with the corridor of enhanced IVT oriented from southwest to 

northeast on the extreme day (bottom row). This AR-like feature strengthens and extends 

eastward in the days leading to the extreme. This can be understood to be capturing strong 

ARs with subtropical moisture origin. On the other hand, days assigned to Node 3 are 

characterized by weaker IVT with the corridor of enhanced transport following a cyclonic 

pattern without an obvious direct subtropical connection. The enhanced IVT develops near the 

coast during the day prior to the extreme.  
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Figure B-2. The number of days assigned to each node per water year.  

Figure B-2 shows the observed distribution of node assignments for heavy precipitation days by 

water year. All years had at least one day that exceeded the 90th percentile of daily precipitation 

(1984 and 2013 only had one day). For years with multiple heavy precipitation days, there is a 

range of node assignments, although some years show preference towards IVT pattern type. 

For example, nearly half of 2017 heavy precipitation days were assigned to nodes 2 and 5. It is 

worth noting that 2017 had the greatest number of heavy precipitation days with notable 

hydrological impacts within the region. 

With the IVT-based SOM constructed (Figure B-1), other variables that may help diagnose 

heavy precipitation can be composited for days assigned to each node’s 5-day progression. 

Figure B-3 shows composites for 300 hPa wind, and sea level pressure (SLP). 300 hPa wind 

patterns help diagnose the upper-level support for heavy precipitation and AR behavior. For 

example, Node 2 shows a jet streak rounding the bottom of a trough, coinciding with surface 

cyclogenesis in the corresponding SLP maps where upper-level divergence would be expected. 

This further diagnoses the development of elevated IVT in the day prior to the extreme day. For 

each node, the 5-day sequence of synoptic conditions associated with ITV-trained SOM 

provided a physical diagnosis of the conditions leading to the extreme precipitation day.   
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Figure B-3. Composite mean of (top) 300 hPa wind speed and (bottom) sea level pressure for 

the days assigned to each node.,  

Outcomes 

● Paper in preparation: Russell, E., and P. C. Loikith, 2023: Synoptic drivers of heavy 

precipitation days in the Upper Yuba Watershed of California. In preparation for Journal 

of Hydrometeorology.  

● This research activity motivates assessment of the utility of the observations-based SOM 

in predicting heavy precipitation events within the watershed using large-scale patterns 

as predictors. 

● This research activity motivates expanding this methodology to other watersheds as the 

range of storm types and characteristics will likely differ based on physical geography 

and local climatology.   

  

References 
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B.2. Evaluation of physical and mesoscale processes 

B.2.2 Upslope water vapor flux along ARs drives variability in 

precipitation 

B.2.3 Precipitation generally increases in elevation in the Upper 

Yuba 

B.2.4 Precipitation varies spatially across the Feather sub-basins 

B.2.5 Sierra Barrier Jet is responsible for a portion of the Feather 

sub-basin precipitation 

 

Note: B.2.2, B.2.3, B.2.4, B.2.5 are combined here 

Contributing Authors: Chris Castallano, Center for Western Weather and Water Extremes and 

Chad Hecht, Center for Western Weather and Water Extremes 

The following analysis will examine how topography and storm characteristics influence the 

spatial variability of precipitation in the Yuba-Feather system. The spatial distribution of 

precipitation in the Upper Yuba subbasin is evaluated by dividing the subbasin into four 

elevation bands (based on the lower, middle, and upper quartiles of elevation), and calculating 

the observed precipitation in each elevation band. Elevations corresponding to the three 

quartiles are estimated from the 4-km PRISM (Daily et al. 2008) digital elevation model. As is 

typically observed in regions of complex terrain, precipitation generally increases with elevation 

in the Upper Yuba. During the 20 water years (WYs) spanning 2003-2022, the average total WY 

mean areal precipitation (MAP) in the lower and upper portions of the Upper Yuba was 882 mm 

(34.7 inches) and 1552 mm (61.1 inches), respectively (Figure B-4).  
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Figure B-4: Time series showing the total water year mean areal precipitation (MAP) in the 

lower (red bars) and upper (blue bars) portions of the Upper Yuba subbasin. Lines represent 

the relative contribution from the lower (dotted) and upper (solid) portions to the total water 

year precipitation in the Upper Yuba. 

Overall, about 29% of the total precipitation fell in the upper 25% of the Upper Yuba, whereas 

only 16% of the total precipitation fell in the lower 25% of the Upper Yuba. The relative 

contributions from the upper and lower portions of the Upper Yuba to the total WY precipitation 

are anti-correlated (i.e., WYs with greater contribution from the lower portion of the Upper 

Yuba are characterized by less contribution from the upper portion of the Upper Yuba, and vice 

versa), with a correlation coefficient of −0.67.  

As Figure B-5 illustrates, the relative contributions from the upper and lower portions of the 

Upper Yuba to total event precipitation are also anti-correlated. The strength of the anti-

correlation increases with precipitation event magnitude. For example, the correlation 

coefficient for all events is −0.76, but the correlation coefficient for events with more than 5 

inches of MAP in the Upper Yuba is −0.86. 
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Figure B-5: Scatterplots showing the relative contributions to total event precipitation from the 

lower (x-axis) and upper (y-axis) portions of the Upper Yuba subbasin. Linear regression lines 

are plotted in red, and the square of the correlation coefficient is provided in the upper right 

corner of each plot. 
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The spatial distribution of precipitation in the Feather watershed is evaluated by calculating the 

observed precipitation in each of the three Feather subbasins - the North Fork Feather (NFF), 

the East Branch North Fork Feather (EBNFF), and the Middle Fork Feather (MFF). As Figure B-6 

demonstrates, the Feather watershed’s precipitation climatology varies considerably by 

subbasin. Climatologically, the NFF is the wettest subbasin, followed by the MFF. The EBNFF is 

substantially drier than the other two subbasins due to being located on the leeward side of the 

main spine of the Sierra Nevada, where rain shadowing is common.  

 

 

Figure B-6: Time series showing the total WY mean areal precipitation (MAP) in the North Fork 

Feather (red bars), East Branch North Fork Feather (blue bars), and Middle Fork Feather (green 

bars). Lines represent the relative contribution from the North Fork Feather (solid), East Branch 

North Fork Feather (dashed), and Middle Fork Feather (dotted) to the total WY precipitation in 

the Feather system. 

During the 20 water years (WYs) spanning 2003-2022, the average total WY mean areal 

precipitation (MAP) in the NFF, MFF, and EBNFF subbasins was 1162 mm (45.7 inches), 1056 

mm (41.6 inches), and 714 mm (28.1 inches), respectively. Overall, 39% of the total 

precipitation fell in the NFF, 40% of the total precipitation fell in the MFF, and only 20% of the 

total precipitation fell in the EBNFF. Note that the relative contribution from the MFF is slightly 

higher than the relative contribution from the NFF because the MFF is larger in area.  

 

The relative contribution from the NFF to the total WY precipitation is anti-correlated (r = 

−0.66) with the relative contribution from both the MFF and the EBNFF to the total WY 

precipitation. As Figure B-5 illustrates, the relative contributions from the NFF and MFF to total 
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event precipitation are also anti-correlated, and the strength of the anti-correlation remains 

steady for different event precipitation thresholds. A different relationship is observed between 

the NFF and EBNFF, such that the strength of the anti-correlation is much weaker for events 

with more than 2 inches of MAP in the Feather watershed. These results suggest that there are 

certain storm characteristics that determine whether the heaviest precipitation falls in the NFF 

or the MFF. 

 

Figure B-5: Scatterplots illustrating the relative contributions to total Feather event 

precipitation from the North Fork Feather (x-axis) and Middle Fork Feather (y-axis). Linear 

regression lines are plotted in red, and the square of the correlation coefficient is provided in 

the upper right corner of each plot. 

Numerous studies have demonstrated that heavy precipitation in Northern California is often 

associated with landfalling atmospheric rivers (ARs). Comparing the relationship between  

Mean-areal event precipitation and projected time-integrated IVT (TIVT) at the mouth of the 

Yuba River watershed shows that TIVT explains 91% (R2=0.912) of the variability in storm total 

precipitation (Figure B-6).  Additionally, we investigate the role that AR intensity may have on 

the distribution of precipitation across the Yuba River watershed. Figure B-7 shows how the 

relative contribution from each of the four elevation bands in the Upper Yuba varies based on 

the event maximum AR-related IVT at a grid point near San Francisco, CA.  
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Figure B-6: Yuba River watershed event Mean-areal precipitation (mm) vs. projected time-

integrated IVT (107 kg m-1) onto 225 degrees (southwest) at the mouth of the Yuba River 

watershed.  

For events with no AR (i.e., AR intensity and duration do not meet the minimum AR Scale 

criteria), the spread in the relative contributions from each elevation band is quite large. It is 

worth noting that these events are generally characterized by smaller MAP in the Upper Yuba 

and include some warm-season events with limited areal precipitation coverage. Compared to 

events with a weak or moderate-strength AR, events accompanied by a strong AR (maximum 

IVT ≥ 750 kg m−1 s−1), are characterized by a small but statistically significant (p < 0.05 based 

on Mood’s median test) increase (decrease) in the relative contribution from the upper (lower-

to-middle) 25% of the subbasin.  

Similar differences are observed for events that feature an AR3, AR4, or AR5, versus an AR1 or 

AR2 on the AR Scale. These results imply greater orographic enhancement of precipitation in 

the Upper Yuba during the strongest ARs, perhaps due to increased moisture flux at altitudes 

near the Sierra crest. Applying a similar analysis to the subbasins in the Feather watershed, we 

find a statistically significant increase (decrease) in the relative contribution from the EBNFF 

(NFF) during events featuring a strong AR versus events featuring a weak or moderate AR 

(Figure B-8). While the explanation for this finding is not yet clear, one possibility is that 

moisture transport associated with stronger ARs may be able to penetrate further inland, rather 

than being blocked by the higher terrain in the central parts of the NFF and MFF (see Figure B-

9). 
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Figure B-7: Box plots showing the statistical distribution of the percent of total event 

precipitation falling in each of the four elevation bands in the Upper Yuba for different 

categories of AR intensity at 37.5°N, 122.5°W. Horizontal lines denote the median values. 

Boxes represent the interquartile range (IQR). Whiskers denote the lowest (highest) values 

above (below) the lower (upper) quartile minus (plus) 1.5 times the IQR. 
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Figure B-8: Box plots showing the statistical distribution of the percent of total Feather event 

precipitation falling in each of the three Feather subbasins for different categories of AR 

intensity at 37.5°N, 122.5°W. Horizontal lines denote the median values. Boxes represent the 

interquartile range (IQR). Whiskers denote the lowest (highest) values above (below) the lower 

(upper) quartile minus (plus) 1.5 times the IQR. 

Another meteorological phenomenon that can modulate precipitation in Northern California is 

the Sierra barrier jet (SBJ). Previous research by Neiman et al. (2013) found that SBJs, which 

are often observed with ARs penetrating through the Bay Area gap, can increase precipitation 

amounts at the northern end of the Sacramento Valley due to enhanced low-level southerly 

moisture transport.  

Here, we investigate the sensitivity of the spatial distribution of precipitation within the Yuba-

Feather system to SBJs by comparing event precipitation at two stations, one in the NFF (Four 

Trees), and another in the Upper Yuba (Alleghany). These stations have similar elevations and 

are both situated between the valley floor and the main spine of the Northern Sierra Nevada. 

Both stations are in locations favorable for orographic enhancement from synoptic-scale 

southwesterly moisture transport associated with landfalling ARs, but the nearly east-west 

orientation of the Northern Sierra Nevada as it crosses through the NFF suggests that low-level 
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southerly moisture transport associated with SBJs may provide additional precipitation forcing at 

Four Trees. Therefore, we may expect enhancement of precipitation at Four Trees relative to 

precipitation at Alleghany during events featuring an SBJ. This hypothesis is generally supported 

by the results shown in Figure B-10. Compared to events without an SBJ, the slope of the linear 

regression is much steeper for events featuring both an AR and an SBJ. In other words, as 

event precipitation increases, the relative increase in precipitation at Four Trees is much larger 

than the relative increase in precipitation at Alleghany when both an AR and an SBJ are 

present. Interestingly, events with an SBJ but no AR do not exhibit the same behavior, which 

suggests that both an AR and an SBJ must be present to produce this precipitation effect. 

Finally, it is worth noting that the largest precipitation events at both stations predominantly 

occur when both an AR and an SBJ are present, and nearly all events featuring an AR3, AR4, or 

AR5 on the AR Scale also feature an SBJ. 

 

Figure B-9: Map showing elevation (color shading), county boundaries (black polygons), and 

the outlines of the HUC8 subbasins in the Yuba-Feather system (red polygons). Black circles 

denote the locations of the Four Trees (FOR) and Alleghany (ALY) precipitation gauges. 
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Figure B-10: Scatterplots showing the total precipitation observed at the Alleghany (ALY; x-

axis) and Four Trees (FOR; y-axis) stations during precipitation events in the Feather watershed 

featuring: no AR and no SBJ (top left), an SBJ but no AR (top right), an AR but no SBJ (bottom 

left), and both an AR and an SBJ (bottom right) Linear regression lines are plotted in red, and 

the square of the correlation coefficient is provided in the upper right corner of each plot. Color 

shading denotes the maximum AR Scale observed at 37.5°N, 122.5°W, during the event. 
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B.2.6 Landfalling ARs are often accompanied by large snow-level rises 

Contributing Authors: Shawn Roj, Center for Western Weather and Water Extremes and Rachel 

Weihs, Center for Western Weather and Water Extremes    

Data 

Snow level climatology’s from three vertically pointing snow level profilers were evaluated 

within the Yuba and Feather Rivers system: Downieville (DLA), New Bullards Bar (NBB), and 

Oroville (OVL). Field observations from the OVL Frequency-Modulated Continuous Wave 

(FMCW) snow level profiler (Johnston et al. 2017) that represent the calculated location of the 

brightband were downloaded from https://psl.noaa.gov/data/obs/datadisplay/. The S-Band 

snow level radar at OVL uses a brightband detection algorithm developed by White et al. 2002 

and White et al. 2003. Measurements at OVL are averaged and saved at 10-minute intervals 

and span 1 January 2012 to 31 March 2023. Field observations from the DLA and NBB micro 

rain radar (MRR) snow level profilers that also represent the calculated location of the 

brightband were downloaded from the CW3E server. The brightband detection algorithm for the 

CW3E MRR profilers was modified from White et al. 2003 and Maahn and Kollias 2012. DLA 

data spans 1 December 2019 to 31 March 2023 and NBB data spans 16 December 2019 to 31 

March 2023. 

Measurement data from snow level radars are known to have some inaccuracies. Therefore, a 

quick quality control process was employed to minimize very large, short duration, snow level 

changes (SLC’s) that may not be real or are not present long enough to affect the hydrology of 

a particular basin. Since the MRR sites are already averaged internally to hourly timesteps, the 

following process was only done for the 10-minute measurements at OVL. Step 1 was to 

calculate the centered 3-hour rolling average at each 10-minute timestep with a minimum of 6 

observations needed. Step 2 was to calculate the absolute difference between each 10-minute 

observation and the 3-hour centered average. Step 3 was to omit the 10-minute measurement 

if it was more than 2 standard deviations from the 3-hour centered average. After this QC 

process was done, hourly median values of the snow level were calculated and used for the 

analysis herein. 

 

https://doi.org/10.1002/joc.1688
https://doi.org/10.1175/MWR-D-13-00112.1
https://psl.noaa.gov/data/obs/datadisplay/
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Analysis 

Detection of the brightband height from the snow level radars is only possible when there are 

melting hydrometeors present above each site. Therefore, the data are representative of 

precipitation events. Drought years can influence the distribution of snow levels if, for instance, 

there was a small number of all warm or all cold storms that affected a particular location that 

year. Therefore, caution should be used when the distribution suggests a mean snow level 

during years with less precipitation events. 

 

Figure B-11. Boxplots distributions of hourly median profiler snow levels by water year at OVL 

(1A), NBB (1B), and DLA (1C). The darker shaded boxplot represents the distribution for each 

site’s entire period of record. 

Figure B-11 shows boxplot distributions of hourly snow levels by water year and for the sites full 

period of record at each of the three profiler sites. Mean snow levels for the period of record at 

OVL, NBB, and DLA are 1652 m, 1549.8 m, and 1736.6 m, respectively. Mean snow levels at 

OVL show large variability between water years with a maximum mean snow level of 2022.6 m 

in water year 2015 and a minimum mean snow level of 1408.1 m in water year 2023. Not only 

was water year 2015 the 4th year of a major drought in California, but the storms that did 

impact the state were warm and exhibited higher snow levels that exacerbated snow drought 

conditions.  



 147 

Water year 2023 was a record-breaking year for much of the U.S. West for precipitation and 

was also cooler than normal. This combination led to copious amounts of snow at upper 

elevations and much lower elevations where snow accumulations are less common. The 

distribution of snow levels at NBB and DLA exhibit less variation over the period of record at 

each site; 1421.5 m – 1618.6 m and 1612.5 m – 1854.6 m, respectively. In addition, both NBB 

and DLA exhibit more outliers likely due to their smaller sample sizes. 

  

 

Figure B-12. Profiler snow level distribution histograms at OVL, NBB, and DLA, from left to 

right. The blue, black, and red triangles represent the 20th percentile, median, and 80th 

percentile, respectively, of hour median snow levels. Elevation bins are 100 m. 

 

Figure B-12 has the same data as figure 1 but is now shown as histogram distributions at each 

site with the 20th percentile, median value, and 80th percentile of hourly median snow levels 

shown for the entire period of record at each site. The NBB and DLA histograms exhibit a sharp 

end at lower elevations. This is partly due to the profiler being located at an elevation high 

enough to receive snow, and therefore absent of a detectable brightband, and the resolution of 

the MRR close to the surface.  

The MRRs are limited to discrete ‘levels’ of measurement. Due to this vertical resolution 

limitation, data from the two levels closest to the surface are omitted. This means that data 

within approximately 200 m of the surface are unavailable, thereby limiting the number of 

possible data points. The FMCW has a vertical resolution of approximately 40 m, and I am 

unaware of data that is omitted close to the surface. In addition, OVL is at a much lower 

elevation and does not often experience snow levels below the profiler elevation. 

 The distribution of hourly snow level rises (SLRs) and hourly snow level falls (SLFs) were also 

analyzed at each site. Figure B-13 shows histograms of hourly SLC’s, where positive (negative) 

values represent hourly rises (falls). The distribution is even at OVL where 80% of the data on 

either side of zero lie between -110 m and 117.5 m with a median value of -2 m. At both NBB 
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and DLA, these values are -150 m to 200 m with a median value of -50 m. This can be 

misleading though and there is probably room for an improved algorithm, but this mostly has to 

do with the resolution of the MRRs and the discrete elevation levels explained above. 

  

 
Figure B-13. Histograms of SLC’s at OVL, NBB, and DLA, from left to right. The blue, dashed 

black, and red lines represent the 80th percentile of hourly SLRs, the median hourly SLC’s, and 

the 20th percentile of hourly SLFs, respectively. Elevation bins are 100 m. 

Because atmospheric rivers (ARs) are typically associated with the warm sector of an 

extratropical cyclone (Ralph et al., 2017) snow levels tend to be higher than non-AR related 

storms (Kim et al. 2013). The previous figures have shown the distribution of snow levels 

during precipitation events. For this analysis we wanted to better understand SLC’s during 

landfalling ARs. We plotted scatter plots of hourly integrated water vapor transport (IVT) 

magnitude vs. hourly integrated water vapor (IWV) with dots shaded as hourly SLC’s (Figure 4).  

 

Figure B-14. Scatterplots of hourly IVT magnitude at a point near the Bay Area vs. hourly IWV 

at a point near the Bay Area, colored by hourly SLCs at DLA NBB, and OVL, from left to right 

For clarity, only hourly SLCs greater than 200 m are shaded as red or blue, otherwise they are 

gray. There are very few SLCs greater than 200 m at both DLA and NBB which makes it difficult 

to identify any real patterns. However, the greatest SLCs tend to be SLRs at all sites. There 

appears to be some clustering of SLR’s at OVL.  When compared to the gray scatter points, 
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SLR’s seem to occur during higher hourly IVT magnitudes and occur more often when IVT 

magnitudes are near 250 units and IWV values are near 20 mm.  

 

Because of a lack of any real patterns and since the number of larger SLRs almost equals the 

number of SLFs, I then added a temporal dimension to the scatterplot. Figure B-15 has the 

same variables plotted but is now looking at 3-hourly changes of each. There is a positive 

correlation at OVL between increasing (decreasing) IVT magnitude, increasing (decreasing) IWV 

and snow levels rises (falls) (Figure B-15A and B-15B). Figures B-15A and B-15B are identical 

but B-15B has the SLFs plotted above the SLR’s for clarity. Again, only hourly SLCs greater than 

200 m are shaded as red or blue, otherwise they are gray. This pattern is much less apparent at 

NBB and DLA due to much smaller sample sizes at each site (Figure B-15C and B-15D). At DLA, 

larger SLF’s appear to be like OVL, but larger SLR’s tend to occur more often when IVT 

magnitude and IWV decrease. At NBB, larger SLF’s also appear to be like OVL, but larger SLR’s 

seem to occur equally as often when IVT magnitude and IWV rise or fall. 
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Figure B-15. Scatterplots of 3-hourly IVT magnitude change at a point near the Bay Area vs. 

3-hourly IWV change at a point near the Bay Area, colored by 3-hourly SLCs at A) and B), OVL, 

C) DLA, and D) NBB. Figures B-15A and B-15B are identical but 4B has the decreasing 3-hourly 

snow level samples plotted above the increasing 3-hourly snow level samples for clarity. The 

color of each dot represents the corresponding 3-hourly SLC where SLFs >200 m and SLRs < 

200 m are grey.  

Finally, we looked at the relationship between hourly IVT magnitude, hourly IWV, and non-zero 

hourly precipitation from the meteorology stations co-located with each profiler (Figure B-16). 

This time, for clarity, samples with hourly precipitation < 5 mm are grey dots. At all three sites, 

the largest hourly precipitation events are not necessarily associated with the largest IVT 

magnitude and IWV. In comparison to NBB and OVL, DLA tends to receive more hourly 

precipitation when IVT magnitudes are relatively larger than IWV. 

Figure B-16. Scatterplots of hourly IVT magnitude at a point near the Bay Area vs. hourly IWV 

at a point near the Bay Area, colored by hourly non-zero precipitation at DLA NBB, and OVL, 

from left to right 
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B.2.7 Maximum hourly precipitation rates are higher with landfalling 

ARs as compared to non-ARs 

Contributing Authors: Samuel Bartlett, Center for Western Weather and Water Extremes 

Data 

A climatology of hourly precipitation observations from the (CDEC) database was gathered for a 

21-year period between 00 UTC 01 Jan 2002 - 23 UTC 31 Jan 2023 at 28 stations within the 

Yuba & Feather watersheds. These stations consisted of a 9 in the North Fork Feather (NFF), 5 

in the East Branch North Fork Feather (EBNFF), 6 in the Middle Fork Feather (MFF), and 8 in 

the Upper Yuba (UYB).  

 

Figure B-17. Yuba & Feather HUC-8 watershed boundaries (black lines), CDEC observation 

sites with precipitation observations during a majority of the study period (points, colored by 

sub watershed), and 30-meter resolution topographic data from the  NASA Shuttle Radar 

Topography Mission (SRTM accessed via QGIS Plugin) (shaded). 

https://www.earthdata.nasa.gov/
https://www2.jpl.nasa.gov/srtm/
https://www2.jpl.nasa.gov/srtm/
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Data Analysis 

Raw observational data was downloaded via the CDEC online data exchange for stations within 

the Yuba and Feather watersheds that had substantial data coverage during the period of 

record for the present study. The original data is formatted in an hourly-reported water-year 

accumulation value for each station in the catalog. Once this data was acquired, a calculation 

was performed to turn this water-year accumulation value into hourly-accumulation values by 

analyzing the difference in accumulation between each hour. 

QC Process 

After the hourly accumulation values were calculated, a three-step quality control (QC) process 

was conducted to limit the amount of erroneous data in the dataset. QC#1 removed any hourly 

accumulation value at a single station greater than 10 inches in one hour. A 10 in/hr rate was 

chosen as this is near the upper limit of what is possible in the atmosphere and above the 

NOAA Atlas 14 100-year return interval value for 60 minute observed precipitation in the region 

(Attached full map and inset). QC#2 removed hourly observations at a single station if they 

were greater than 1 inch (25.4 mm) AND greater than the sum of all observations in the sub-

watershed. This QC step was designed to eliminate single station erroneous values which are 

unlikely due to isolated, high single hourly precipitation observations. QC#3 verifies that any 

hourly accumulation which was calculated for the original water year total is associated with a 

valid hourly observation, and not a missing value in the dataset. Across all stations in the 

dataset, the highest amount of missing and QC’ed out values occurred within the NFF sub-

watershed at the RTL station, with 17,012 hours missing (9.2%) and 354 hours QC’ed out 

(0.19%), combined for a total of 9.4% of the data removed from the original dataset for this 

station. 

Research Questions 

1. What was the average event maximum hourly precipitation rate during No-AR vs AR 

events over each subwatershed? 

2.  What was the average event maximum hourly precipitation rate during AR1 & AR2 

events vs AR3, AR4, AR5 events? 

3. For all hourly precipitation observations greater than zero during each event, what was 

the average hourly precipitation rate during No-AR vs AR events?  

4. For all hourly precipitation observations greater than zero during each event, what was 

the average hourly precipitation rate during AR1 & AR2 events vs AR3, AR4, AR5 

events? 

5. What was the average percent of the total AR duration with observed precipitation 

values greater than zero during No-AR vs AR events? 

6. What was the average percent of the total AR duration with observed precipitation 

values greater than zero during AR1 & AR2 events vs AR3, AR4, AR5 events? 
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7. Over the full POR, what is the 99th, 95th, and 90th percentile hourly precipitation value 

observed at each station and over each subwatershed? 

Analysis #1 

 

Figure B-18. Average maximum hourly precipitation rate observed during the top 90th 

percentile precipitation events in the Feathers and Yuba watersheds, plotted for the stations in 

each subwatershed (columns), with the average of all stations plotted (horizontal black lines), 

subset by No AR vs AR precipitation events.  

 

Method: For all hours of each precipitation event, pull out the maximum observed hourly 

precipitation rates. Take all the maximum values for each event and average them for each 

station, this is shown as the column value. Take all these averages for each station, then 

average those to get a single value for each analysis in the subwatersheds which are 

represented by the horizontal black lines. This analysis was subset for precipitation events that 

had No AR vs those that had and AR 

 

Analysis: On average, the maximum hourly precipitation rates during precipitation events is 

almost double during AR related precipitation vs No AR related precipitation across all 

subwatersheds. When comparing No AR events to AR events, in the NFF there is a 92% 

increase, EBNFF a 79% increase, MFF a 111% increase, and UYB a 93% increase, which 

averages out to 94% across the 4 sub watersheds. 
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NFF   No AR: 3.7 mm AR: 7.1 mm  Percent Increase: 92% 

EBNFF            No AR: 2.8 mm AR: 5.0 mm  Percent Increase: 79% 

MFF   No AR: 2.8 mm AR: 5.9 mm  Percent Increase: 111% 

UYB   No AR: 4.2 mm AR: 8.1 mm  Percent Increase: 93% 

 

Analysis #2 

 

Figure B-19. Average maximum hourly precipitation rate observed during the top 90th 

percentile AR related precipitation events in the Feathers and Yuba watersheds, plotted for the 

stations in each subwatershed (columns), with the average of all stations plotted (horizontal 

black lines), subset by AR1, AR2 and AR3, AR4, AR5 ranked events. 

Method: For all hours of each AR related precipitation event, pull out the maximum observed 

hourly precipitation rates. Take all the maximum values for each event and average them for 

each station, this is shown as the column value. Take all these averages for each station, then 

average those to get a single value for each analysis in the subwatersheds which are 

represented by the horizontal black lines. This analysis was subset for precipitation events that 

were ranked AR1, AR2 vs AR3, AR4, AR5 based on the Ralph et al. 2019 AR scale. 

Analysis: As AR intensity increases from AR1, AR2 to AR3, AR4, AR5 the maximum hourly 

precipitation rates at each station increases by approximately 50% across stations in each sub-

watershed. In the NFF there is a 41% increase, EBNFF a 42% increase, MFF a 56% increase, 

and UYB a 40% increase, which averages out to 45% across the 4 sub watersheds. 
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NFF   AR1, AR2: 6.4 mm AR3, AR4, AR5: 9.0 mm Percent Increase: 41% 

EBNFF            AR1, AR2: 4.5 mm AR3, AR4, AR5: 6.4 mm Percent Increase: 42% 

MFF   AR1, AR2: 5.1 mm AR3, AR4, AR5: 8.0 mm Percent Increase: 56% 

UYB   AR1, AR2: 7.3 mm AR3, AR4, AR5: 10.2 mm Percent Increase: 40% 

Analysis #3 

 

Figure B-20. Average hourly precipitation rate observed during the top 90th percentile 

precipitation events in the Feathers and Yuba watersheds, plotted for the stations in each 

subwatershed (columns), with the average of all stations plotted (horizontal black lines), subset 

by No AR vs AR precipitation events. 

Method: Take the average of all hours of precipitation greater than zero during each event. 

Then average these event values across each station which is represented as the columns. Take 

all these averages for each station, then average those to get a single value for each analysis in 
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the subwatersheds which are represented by the horizontal black lines. This analysis was subset 

for precipitation events that had No AR vs those that had and AR 

Analysis: On average, the average hourly precipitation rates during precipitation events at 

stations in the Yuba and Feather watersheds is 37% higher during AR events as compared to 

No AR Events. The percent increase across stations in eac subwatershed are as follows, 41% 

increase in the NFF, 21% increase in the EBNFF, 43% increase in the MFF, and 42% increase in 

the UYB. 

 

 

 

NFF   No AR: 1.7 mm AR: 2.4 mm  Percent Increase: 41% 

EBNFF             No AR: 1.4 mm AR: 1.7 mm  Percent Increase: 21% 

MFF   No AR: 1.4 mm AR: 2.0 mm  Percent Increase: 43% 

UYB   No AR: 1.9 mm AR: 2.7 mm  Percent Increase: 42% 

Analysis #4 

 

Figure B-21. Average hourly precipitation rate observed during the top 90th percentile AR 

related precipitation events in the Feathers and Yuba watersheds, plotted for the stations in 

each subwatershed (columns), with the average of all stations plotted (horizontal black lines), 

subset by AR1, AR2 and AR3, AR4, AR5 ranked events. 

Method: Take the average of all hours of precipitation greater than zero during each AR 

related event. Then average these event values across each station which is represented as the 
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columns. Take all these averages for each station, then average those to get a single value for 

each analysis in the subwatersheds which are represented by the horizontal black lines. This 

analysis was subset for precipitation events that were ranked AR1, AR2 vs AR3, AR4, AR5 based 

on the Ralph et al. 2019 AR scale. 

Analysis: On average across the watershed, as AR intensity increases from AR1, AR2 to AR3, 

AR4, AR5 the event average hourly precipitation observations during strong ARs are 37% 

higher than weaker ARs. Across the subwatersheds, strong ARs have 36% higher average 

hourly precipitation rates, 31% higher in the EBNFF, 47% higher in the MFF, and 32% higher in 

the UYB. 

 

NFF   AR1, AR2: 2.2 mm AR3, AR4, AR5: 3.0 mm Percent Increase: 36% 

EBNFF            AR1, AR2: 1.6 mm  AR3, AR4, AR5: 2.1 mm Percent Increase: 31% 

MFF   AR1, AR2: 1.7 mm AR3, AR4, AR5: 2.5 mm Percent Increase: 47% 

UYB   AR1, AR2: 2.5 mm AR3, AR4, AR5: 3.3 mm Percent Increase: 32% 

Analysis #5 

 

Figure B-22. Average percent of precipitation event duration with observed precipitation for 

each station in the Feather and Yuba watersheds (columns), with the average of all stations 

plotted (horizontal black lines), subset by No AR vs AR precipitation events.  

Method: For each event, count the number of hours with precipitation observations greater 

than zero at each station. Divide that number by the event duration to establish a percent 

value. Average all these percentages for each station (columns), then average the station 
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values across each subwatershed (black lines). This analysis was subset for precipitation events 

that had No AR vs those that had and AR 

Analysis: On average across the 4 sub watersheds, the average percent of each event duration 

with observed precipitation increased by 25% when comparing No AR-to-AR events.  

Broken down by subwatersheds, the percent increase is 24% in the NFF, 29% in the EBNFF, 

26% in the MFF, and 20% in the UYB.   

 

 

 

 

 

NFF   No AR: 49%  AR: 61%  Percent Increase: 24% 

EBNFF             No AR: 38%  AR: 49%  Percent Increase: 29% 

MFF   No AR: 38%  AR: 48%  Percent Increase: 26% 

UYB   No AR: 56%  AR: 67%  Percent Increase: 20% 

Analysis #6 

 

Figure B-23. Average percent of AR Related precipitation event duration with observed 

precipitation for each station in the Feather and Yuba watersheds (columns), with the average 
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of all stations plotted (horizontal black lines), subset by AR1, AR2 and AR3, AR4, AR5 ranked 

events. 

Method: For each AR Related event, count the number of hours with precipitation observations 

greater than zero at each station. Divide that number by the event duration to establish a 

percent value. Average all these percentages for each station (columns), then average the 

station values across each subwatershed (black lines). This analysis was subset for precipitation 

events that were ranked AR1, AR2 vs AR3, AR4, AR5 based on the Ralph et al. 2019 AR scale. 

Analysis: As AR intensity increases from AR1, AR2 to AR3, AR4, AR5 the average duration of 

precipitation increases by 13% across each subwatershed, with a percent increase of 7% in the 

NFF, 22% increase in the EBNFF, 20% in the MFF, and 5% in the UYB. Stronger ARs have 

marginally longer precipitation durations as compared to weak ARs, but this analysis does not 

consider the difference in duration of weak events as compared to longer, strong AR events. 

Some form of precipitation duration percentage normalized for event duration would be 

required to draw additional conclusions.  

 

 

 

 

 

NFF   AR1, AR2: 60% AR3, AR4, AR5: 64% Percent Increase: 7% 

EBNFF  AR1, AR2: 46%  AR3, AR4, AR5: 56% Percent Increase: 22% 

MFF   AR1, AR2: 46%  AR3, AR4, AR5: 55% Percent Increase: 20% 

UYB   AR1, AR2: 66% AR3, AR4, AR5: 69% Percent Increase: 5% 

 

Analysis #7 
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Figure B-24. The 99th, 95th, and 90th percentile threshold 1-hour precipitation observations 

for stations in the NFF, :EBNFF, MFF, and UYB watersheds. Listed by three letter station 

identifiers within each subwatershed, elevation (ft), and statistical threshold values (mm). 

 

Method: For all hourly precipitation observations greater than zero during the full period of 

record, compute the 99th, 95th, and 90th percentile threshold values for each station within the 

subwatershed. 

Analysis: An analysis of the relationship between precipitation observations and elevation 

yields no significant results in terms of precipitation event maximum hourly observation, event 

average hourly observation, or event duration with precipitation observed. 
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Analysis #7a 

 

Figure B-24. As in Figure B-23, except sorted from lowest elevation to highest elevation, 

shaded by subwatershed. 
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Figure B-25. Number of missing, QC’ed out, and sum of missing & QC’ed out hourly 

observation at each station, with the percentage of the full period of record listed below each 

value. Percentage values are calculated by dividing the counts for each category by the full 

study period duration of 184,824 hours. 
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Figure B-26. Number of events in each category in the present study for No AR and AR events 

(grey), AR1, AR2, AR3, AR4, and AR5 events (rainbow), and AR1 & AR2, and AR3, AR4, AR5 

events (pinks) from the AR catalogs developed for the Feather and Yuba watersheds.  

 

Figure B-27. NOAA Atlas 14 60-minute precipitation threshold values (shaded, contoured) for 

1-year (top left), 5-year (top right), 25-year (bottom left), and 100-year (bottom right) 

recurrence intervals over the Yuba and Feather watersheds (black lines).  

 

B.2.8 Extreme hourly precipitation rates are not necessarily driven by 

NCFRs 

Contributing Authors: Jon Rutz, Center for Western Weather and Water Extremes and Matthew 

Steen, Center for Western Weather and Water Extremes 

We used hourly precipitation data and archived radar imagery to quantify the fraction of 

extreme precipitation events associated with narrow cold-frontal rain bands (NCFRs) across the 

Yuba-Feather (Y-F) Watersheds. First, quality control measures were performed on the hourly 

precipitation data obtained from the California Data Exchange Center (CDEC) to ensure only 

high-quality data for the analysis. Next, we identify the extreme (i.e., top 25) precipitation 

events from each sub-watershed and merge these lists, resulting in 55 unique events due to 
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overlapping events. We can manually examine NEXRAD radar data from Sacramento, CA (DAX) 

to assess whether an NCFR impacted the Y-F Watersheds, which fall roughly within ~39.3 N to 

~40.3 N and ~ -120.2 W to ~ -121.4 W, using the following rubric (Example provided in Figure 

B-28): 
 

1. Yes: extremely high confidence that an NCFR exists and overlaps some portion of the 

watersheds 

2. No: extremely high confidence that there is no NCFR present or that if present, the 

NCFR does not overlap some portion of the watersheds during this hour 

3. Maybe: either 1) a feature with low-confidence identification as an NCFR that overlaps 

some portion of the watersheds, or 2) a feature with high-confidence identification as an 

NCFR that very nearly overlaps some portion of the watersheds, or 3) some combination 

of the uncertainties above 

After accounting for missing radar data, 49 unique events were analyzed (approximately 2.5 

events per year, but these events are not equally distributed across years). For these events, 9 

(16%) are defined as yes, 39 (71%) as no, and 1 (2%) as maybe. In other words, the chance 

of any extreme precipitation event (i.e.) being associated with an NCFR is ~16%. We caution 

that while this appears to assign a relatively low overlap between NCFRs and extreme hourly 

precipitation in the Y-F Watersheds, the real headline is that extreme precipitation here does 

not require an NCFR – orographic enhancement and other processes play key roles in most 

events. However, what this study does not answer is how often extreme hourly precipitation 

occurs when an NCFR is present. Answering that question is beyond the scope of this study and 

requires radar analysis of all precipitation events to determine how many NCFRs are not 

associated with extreme hourly precipitation. 

For NCFRs: (aka how we got the dates) 

 Precipitation QC: 

1. Acquire CDEC data sheets for each of the subwatershed from Sam Bartlett. This data 

had been previously QC’d by Sam, we were looking to take it a step further. The four 

sub-watersheds are East Branch North Fork Feather (EBNFF), Middle Fork Feather 

(MFF), North Fork Feather (NFF) and Upper Yuba (UYB). 

2. From each data sheet, I looked at each set of hourly precipitation observations. 

3. If any single station observation in that hour was assigned the '-9999.99' missing tag, it 

will now be assigned a zero. This will assist with a QC step later. 

4. If half or more of the station hourly observations are 0, this hour of precipitation will not 

be considered and is 'thrown out'. This equates to the following number of stations: 

EBNFF >= 3 stations 

MFF >= 3 stations 
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NFF >= 5 stations 

UYB >= 4 stations 

We decided on this step to help eliminate hours of precipitation where most of the 

watershed was not impacted in some way. This also effectively removed all hours in 

which there was no measured precipitation, which helped limit the number of hours of 

data in consideration. 

5. Next, we sum up the station observations for the hour and calculate the percentage 

contribution of each station to the sum. 

6. If any one station's contribution is 50% or greater, this hour of precipitation is not 

considered and is also 'thrown out'. This step was taken to remove hours in which the 

precipitation at one station seems unrealistically high relative to other stations (note that 

this step may remove some real events but is worthwhile to increase our confidence in 

the remaining events). Hours of precipitation that have passed both checks are then 

considered for analysis 

Event Selection: 

1. Events needed to be selected and defined prior to further analysis. 

2. For each subwatershed, the remaining hours of precipitation were sorted by their total 

precipitation. The goal was to analyze the top 25 events per watershed. 

3. For this case, an event is defined as any unique hour(s) of precipitation. For an hour of 

precipitation to be grouped together and be defined as an event there must be a ≤ 6-

hour gap between observations. 

1. ex/ Precipitation on 09/07 at 13Z and 18Z would be grouped together, 

but precipitation at 13Z and 21Z would not be. 

4. Once the top 25 were identified for each subwatershed, a master list of events was 

created by combining the four lists. This resulted in 55 unique events across the four 

subwatershed due to overlapping events 

Radar Analysis: 

1. For each masterlist event, short-range base reflectivity at 0.5o tilt angle and short-range 

composite reflectivity were gathered for the hours of observation as well as the 6 hours 

before and after from the NCEI NEXRAD Radar Archive (NEXRAD Data Inventory Search 

| National Centers for Environmental Information (noaa.gov)). The Sacramento, CA 

radar, KDAX,  was selected as the radar of choice due to its central location in Northern 

California, upstream of the Yuba-Feather Watersheds. 

1. These radar products were chosen based on Orla-Barile et al. 2021 methodology 

for their climatology of NCFRs in Southern California (A Climatology of Narrow 

Cold‐Frontal Rainbands in Southern California - Orla‐Barile - 2022 - Geophysical 

Research Letters - Wiley Online Library) 

https://www.ncdc.noaa.gov/nexradinv/
https://www.ncdc.noaa.gov/nexradinv/
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2021GL095362
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2021GL095362
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2021GL095362
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2021GL095362
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2021GL095362
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2021GL095362
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2021GL095362
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2. If either product was unavailable, the long-range alternative was selected 

instead. If neither were available then that event would not be analyzed. 

2. For each event, the goal was to identify if there was an NCFR impacting the watersheds. 

The subwatersheds fall between a box of latitude ~39.3o N to ~40.3o N and longitude ~ 

-120.2 W to ~ -121.4 W.  

1. During the top hours identified for the event, if any portion of the NCFR passed 

through this box at all during a scan in the hour(s), it would count for the 

purpose of this analysis. 

2. A feature would be identified as an NCFR if a region of ≥ 40 dbz was found to 

have a length to width ratio of 5:1 or greater. 

3. During the hour(s) of the event, a yes/no/maybe would be assigned to the hour 

based on the presence of an NCFR of the definition above. 

1. Yes is a definite NCFR with any portion within the boundaries of the 

watershed 

2. Maybe is a feature that might be an NCFR that passes within the 

boundaries of the watershed or if only a small portion of the NCFR passes 

through the boundaries 

3. No is there is no NCFR present or a present NCFR does not pass near the 

watershed boundaries 

3. A similar methodology is applied to the six hours before and after. If there is a maybe or 

yes during the period, the specific time is noted not just blankly noted as maybe or yes 

For Precipitation Events: 

1. Beginning with the QC’d precipitation dates used in the NCFR analysis, we wanted to 

locate the top percentile hourly precipitation in each watershed. 

2. How we elected to look at this was not directly based on total precipitation but to look at 

the average percentile hourly precipitation across the stations in the watershed. We 

hoped that by averaging precipitation percentiles, stations that consistently received 

greater precipitation totals did not exhibit more influence on the events that would be 

selected. 

a. For example, the second largest hourly precipitation total across the NFF 

subbasin occurred on 2/4/17 at 14Z where 122 mm was measured by the 

station. 98.552 mm came from two of the nine stations (54.864 at BRS and 

43.688 at FOR). While this is the second highest total, when averaging the 

percentiles across the subwatershed this was a 59th percentile event. So, 

while this was extreme for two stations it was not extreme for the subbasin 

on average. 

3. When examining the average percentile hours, we noticed that some historically large 

events that we expected to fill out the top 10 and top 25 hourly precipitation percentiles 

were not there, namely the October 24-25, 2021, event. We determined that this was a 
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result of stations reporting no measured precipitation and therefore dragging down the 

subbasin station percentile average. 

4. Due to this observation, we elect to do an average across the subbasin that did not 

include zero percentile ranks in the average. This effectively increased the number of 

events that showed up in higher average percentile ranks. 

5. Following our averaging we elected to look at the top five percent of hour precipitation 

observations (averaged across subbasin 95th percentile and above). When combining the 

hourly lists from each subbasin, there were 155 hourly observations using the averaging 

method that included zero percentiles and 352 hourly observations with the averaging 

method that did not include zero percentiles. When using the same methodology for 

event definition as above in the NCFR analysis, 84 unique events were identified using 

the hourly observations that used the non-zero averaging method

Figure B-28: Example of events that fall under the rubric of no, maybe, and yes for an 

NCFR over the Yuba and Feather Watersheds via the KDAX (Davis) NEXRAD Radar.  

B.3. AR Reconnaissance 

Contributing Authors: Anna Wilson, Center for Western Weather and Water Extremes and 

Minghua Zheng, Center for Western Weather and Water Extremes 

Background 

Atmospheric River (AR) Reconnaissance (AR Recon) is a targeted observational campaign that 

fills critical gaps in conventional data sources over the Northeast Pacific Ocean, primarily in and 

around ARs (Ralph et al., 2020; Zheng et al., 2021a). The main objective of AR Recon is to 
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improve forecasts of landfalling ARs affecting the U.S. West Coast. AR Recon observations do 

this by enabling better model representation of the precipitation-causing AR storms, which is an 

essential foundation to enhance the accuracy of precipitation forecasts. They also enable critical 

diagnostics of model errors, which is the first step to improving model performance. The 

program is led by CW3E in partnership with NOAA, and is guided by an international, 

interagency Steering Committee. Operationally, the program includes Air Force Reserve 

Command’s (AFRC) 53rd Weather Reconnaissance Squadron (53 WRS) WC-130J aircraft 

generally based in Mather, CA, and one National Oceanic and Atmospheric Administration 

(NOAA) Aircraft Operations Center (AOC) G-IV aircraft generally based in Honolulu, HI.  

Using data from AR Recon campaigns back to 2016, studies have demonstrated the positive 

impact of dropsonde data on AR forecast skill (e.g., Stone et al. 2020; Zheng et al. 2021b and 

2023; Lord et al. 2023a,b; DeHaan et al. 2023); more details are provided in Section 3. 

Alongside the improvement of real-time NWP forecasts, the vast observational datasets 

collected as part of AR Recon enabled detailed process studies that further the understanding of 

the key physical processes and dynamics of ARs (e.g., Cannon et al. 2020; Norris et al. 2020; 

Cobb et al. 2021a; Lavers et al. 2023; Ralph et al. 2023). Observations of ARs can also be used 

in model assessment studies, such as examining model biases and forecast model skill (e.g., 

Lavers et al. 2018, 2020a; Stone et al. 2020), and their fidelity compared to reanalysis products 

(e.g., Guan et al. 2018; Cobb et al. 2021b). These studies show that AR Recon is successful at 

addressing both operational, real-time forecasting needs, as well as longer-term research goals, 

within the framework of a Research and Operations Partnership. 

In January 2023, the 53 WRS and NOAA AOC flew the longest sequence on record to sample a 

family of ARs impacting California (DeFlorio et al., 2023), with IOPs for 13 consecutive days, 

including eight days with multiple aircraft sampling ARs. Airborne Radio Occultation (ARO; 

Haase et al., 2021) was available on the G-IV and equipment has since been added to all WC-

130Js. Additionally, drifting buoys that are part of the NOAA-funded, Scripps Lagrangian Drifter 

Laboratory-led Global Drifter Program (Centurioni et al., 2017), upgraded by AR Recon to 

measure surface pressure, were deployed via AFRC 53 WRS and ships of opportunity. 

Radiosondes were launched throughout California, which is a component of AR Recon funded 

through USACE FIRO.  

This past season represented the highest number of IOPs flown to date (Table B-2, Figure B-

29), and the highest number of radiosondes released in a single season (Table B-2, Figure B-

30). All AR Recon dropsonde, radiosonde, and buoy data were distributed in real time via the 

Global Telecommunications System for operational NWP assimilation. Data were assimilated in 

real-time into GFS, ECMWF IFS, and NAVGEM operational forecast models, amongst others. 

 2023 2022 2021 2020 2016-2019 (non-
operational) 

Number of IOPs 39 25 29.5 17 15 
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Number of flights 51 32 45 31 19 

Dropsondes 1380 746 1142 738 631 

Radiosondes 400 11 111 58 259 

Drifters Deployed 50 50 30 64 32 

ARO profiles 1212 530 872 686 168 

Table B-2. Summary of the number of AR Recon observations taken by year. AR Recon was 

considered an operational requirement beginning in 2020 (ICAMS, 2022). 

 

Figure B-29. AR Recon WY2023 Pacific dropsonde release locations.  

   



 170 

  

Figure B-30. Radiosonde release locations in northern California used during AR Recon 2023 

with trajectories. USBOD: U.S. Bodega Bay; USYUB: U.S. Yuba. 

   

AR Recon Impacts  

Near real-time data impact experiments with the National Centers for Environmental Prediction 

operational global forecast system (GFS) have become a regular and important part of the 

yearly AR Recon campaign, to examine and document the dropsonde impacts on predicting 

landfalling ARs and their associated precipitation. Hindcast studies from multiple modeling 

centers have also explored data impact in post-season analyses. Some highlights are below: 

● For the GFS model, preliminary results for consecutive IOPs in 2023, 6 (January 6) – 18 

(January 18) show large positive impacts on precipitation forecasts over California. The 

Mean Absolute Error (MAE) improvements in experiments including AR Recon dropsonde 

data compared to model runs without the data are about 7%, 11%, 25% and 18% for 

precipitation thresholds of 0.1, 0.5, 1.0 and 2.5 inches, respectively. The domain 

average MAE improvement in runs including the dropsonde data is nearly 18%. 

Dropsondes were also found to be capable of reducing cold, dry, and slow biases in GFS 

model background forecasts for AR conditions.  

● Preliminary results from case studies with the GFS model in Washington, the central 

coast in CA, and the Sierras have all illustrated increased lead times on the order of days 

for the regions of heaviest precipitation, with inclusion of dropsondes compared to not 

including the dropsondes. 

● AR Recon per-observation impact on forecasts is more than double that of the individual 

observations in North American Radiosonde network, with global reduction in forecast 
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error per flight comparable to the entire North American Radiosonde network in the 

Naval Research Laboratory (NRL)’s global model (Stone et al., 2020). 

● AR Recon data improve precipitation forecasts up to 9% more than satellite data alone, 

particularly in heavy rainfall, in a National Center for Atmospheric Research-led study 

(Sun et al 2022). 

● AR Recon dropsonde observations reduce errors in AR water vapor flux and inland 

precipitation at forecast lead times from 1 to 6 days, with the largest improvements in 

inland precipitation forecast skill associated with back-to-back flights every other day 

(Zheng et al 2021b). There was also a case study in this paper that showed the 

precipitation forecast error over western Washington was improved by ∼50% at a lead 

time of 12–36 h. 

● In the GFS, at critical lead times of 3-5 days, AR Recon observations improve 

precipitation forecasts by 5-15% over the entire western US and by 10-20% over Pacific 

Northwest and Northern California (Lord et al 2023a). 

● In the GFS, AR Recon observations improve atmospheric river, wind, humidity, and 

precipitation forecasts over the U.S. West Coast by improving low-altitude moisture 

fields. (Lord et al 2023b) 

● Assimilating the AR Recon drifter observations showed beneficial impact on Northern 

Hemisphere and North American forecasts in the NRL model such as improving 72-h and 

96-h Northern Hemisphere forecasts of winds in the lower and middle troposphere, and 

geopotential height in the whole troposphere (Reynolds et al., 2023). 

● AR Recon observations increase the assimilation number of satellite data by 5-10% into 

the NCEP Global Forecast System, reduces bias correction, and benefits the data 

assimilation processes for up to 1 week after each mission (Zheng et al., 2022). 

● Dropsondes improved the representation of ARs in the model analyses, particularly near 

sharp horizontal and vertical gradients. Reduced mission frequency and dropsonde 

horizontal spacing degraded forecast skill (Zheng et al., 2023). 

● The ECMWF and GFS models show many improvements in forecast skill with added 

information from dropsondes, w/ significant improvements in the forecast IVT and 

precipitation generally occurring in both models. Several case studies conducted looking 

at FIRO watersheds in particular illustrated improvements in the Yuba-Feather system 

(Figure B-31) (DeHaan et al., 2023). 

 



 172 

 

Figure B-31. (from DeHaan et al., 2023): Counts of instances (valid days and lead times) 

where each of the control and denial forecasts had a smaller watershed intensity error 

magnitude for 3 California watersheds (a and b), and the mean difference (control - denial) of 

the magnitude of the error for those instances (c and d). The counts are limited to cases where 

the difference between control and denial is greater than 1mm/24h. 

 

Recommendations 

● Continue AR Recon field campaigns yearly, including exploring innovative new 

technology as well as collecting observations we understand are critical. 

○ Continue appropriate advances, including data collection farther upstream. 

○ Continue to conduct near real time data denials and add near real time model 

verification 

● Continue refining assessment protocols useful for the Yuba Feather FIRO program, 

within the Research and Operations Partnership framework. 

○ Assess data impacts in the Yuba-Feather in the framework of probabilistic 

forecasts. 

● Begin data assimilation studies for radiosonde data. 

● Continue to conduct case studies designed to investigate dynamical and physical 

mechanisms behind forecast improvements. 
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B.4. Lead-time prediction of landfalling ARs 

Contributing Authors: Jason M. Cordeira, Center for Western Weather and Water Extremes 

Introduction 

Atmospheric Rivers (ARs) are long and narrow regions of enhanced integrated water vapor 
transport (IVT) that can influence the occurrence of precipitation-related high-impact weather 
events along U.S. West Coast such as floods and flash floods (e.g., Young et al. 2017). 
Landfalling ARs may also influence the occurrence of extreme wind events (Waliser and Guan 

2017) and increase the likelihoods of avalanches and avalanche fatalities (Hatchett et al. 2017) 
and shallow landslides (Oakley et al. 2018).  

The potential for hazardous weather associated with landfalling ARs can be summarized by (1) 
National Weather Service-issued watches, warnings, and advisories (WWAs) where 60–90% of 
flood-related WWAs in the Western U.S. occur on days with cool-season landfalling ARs (Bartlett 

https://doi.org/10.1175/BAMS-D-19-0287.1
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and Cordeira 2021) and (2) damage claims in the National Flood Insurance Program where ARs 
have caused an average of $1.1 billion in flood damages annually across the Western U.S. 
(Corringham et al. 2019).  

Due to the causal relationship between landfalling ARs and the potential for hazardous weather 
across the western US, reliable and skillful forecasts of landfalling ARs are critical to hazard 

preparation, risk mitigation, and water resources management (e.g., DeFlorio et al. 2018; Ralph 
et al. 2020; Cordeira and Ralph 2021).  

The goal of this study is to objectively evaluate the lead-time prediction skill of the National 
Centers for Environmental Prediction (NCEP) Global Ensemble Forecast System (GEFS) model 
forecasts of enhanced IVT in northern California for October 2017 through January 2023 that is 
observed during landfalling ARs. This study complements previous studies Cordeira and Ralph 
(2021) and Stewart et al (2022). 

Methodology and Analysis 

This study leverages forecast data that are commonly illustrate via the “CW3E” AR Landfall 

Tool. To summarize forecasts of AR frequency, intensity, duration, and landfalling location, an 
“AR Landfall Tool” was created and used as an aid in providing situational awareness of 
landfalling ARs using ensemble numerical weather prediction data (Cordeira et al. 2017; 
Cordeira and Ralph 2021).  

The AR Landfall Tool is primarily a tool that depicts ensemble IVT data as a probability-over-
threshold for different IVT magnitudes for a forecast transect along the west coast of North 
America. The most used threshold in AR-related forecasts along the U.S. West Coast is IVT 
magnitudes ≥250 kg m–1 s–1 (Cordeira et al. 2017) and the ensemble probability of IVT 
magnitudes ≥250 kg m–1 s–1 is referred to as P250 by Cordeira and Ralph (2021).  

The study by Cordeira and Ralph (2021) found that the 20-member GEFS P250 forecasts near 
coastal northern California at 38ºN, 123ºW for WY2017–2020 were reliable and successful at 
lead times of ~8–9 days with an average success ratio >0.50 for P250 forecasts ≥50% at lead 
times of 8 days and Brier skill scores >0.10 at a lead time of 8–9 days. The highest success 
ratios and probability of detection values for P250 forecasts ≥50% occurred on average along 
the northern California and Oregon coastlines and the lowest occurred on average along the 
southern California coastline. The average probability of detection of more intense and longer 
duration landfalling ARs was also 0.10–0.20 higher than weaker and shorter duration events at 
lead times of 3–9 days. 

In October 2021, the NCEP GEFS was upgraded to include 30 ensemble members and the AR 
Landfall Tool has been continuously run with archived data through WY2023. As opposed to 
visualizing individual forecasts from within the AR Landfall Tool framework along the West 
Coast, a different forecast visualization can be constructed to show how individual forecasts 
evolve as a function of lead time as in Fig. 4 of Stewart et al. (2022). These “waterfall analyses” 
allow for a visual assessment of the lead-time prediction (i.e., situational awareness) of 

 

enhanced odds of a landfalling AR at a given point. A waterfall analysis for the verification 
period from 17 December 2022 through 17 January 2023 is shown in Figure B-32 at 37.5N, 
122.5W near San Francisco, California.  
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Figure B-32. (a) A verification time – lead-time analysis of the ensemble odds of IVT 
magnitudes >=250 kg/ms (shaded) from the NCEP GEFS for forecasts verifying between 17 
December 2022 through 17 January 2023. (b) A time series of IVT magnitude from the GEFS 
control IVT magnitude at the 0-hour forecast time (kg/ms) with periods with IVT magnitudes 
>=250 kg/ms shaded in red.  

While the waterfall analysis in Figure B-32 can be subjectively analyzed to identify periods of 
false alarms (e.g., 29 December 2022; 3 January 2023), periods with longer-lead prediction 
(e.g., 31 December 2022), or periods with shorter-lead prediction (e.g., 8 January 2023), it 
does not allow for an objective assessment of “how far in advance does the GEFS provide 
enhanced situational awareness for a landfalling AR?” To answer this question, we investigate 
the lead time at which the probability-over-threshold increases above a given percentage and 
stays above a given threshold for the subsequent leads prior to verification. This lead time value 
can then be averaged for the entire period of AR landfall (i.e., its duration), taken at the start 
time of the landfalling AR, or the time of maximum IVT magnitude to answer slightly different 

questions about the afforded situational awareness.  
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Figure B-33. Table of the eight landfalling AR events, their characteristics, and IVT magnitude 
at 37.5N, 122.5W during the deep dive period from late December 2022 through January 2023.  

The above-mentioned analysis of the lead-time of probability-over-threshold will be assessed for 
the eight landfalling ARs and use an initial threshold for the probability-over-threshold 
increasing above 75% and subsequently staying above a more generous 50% prior to 

verification (Fig. 3). For each of the landfalling ARs, the lead time prediction for the time of 
maximum IVT magnitude and the event average duration was greater than the start time of the 
AR (i.e., the start time of an AR is more difficult to predict than a time in the middle of AR 
landfall or its average over its duration). The average lead time for the start time of the AR was 
~3 days with a range from 1-4 days, whereas the average lead time for either the event or time 
of maximum IVT was ~5 days with a range from ~9-10 days to ~4 days.  
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Figure B-34. Lead time at which the ensemble probability-over-threshold increased above 
75% and stayed above 50% for the start time of the AR (orange), the time of maximum IVT 
magnitude during the AR (gray), and an average for all times with the AR (blue) at 37.5N.  

 

For a longer period of record, we can assess the lead time of the probability-over-threshold for 
all storms for the period from October 2016 through January 2023 with an AR rank of AR2+ 
following the AR scale of Ralph et al. (2019). In this analysis, we will use an initial threshold for 
the probability-over-threshold increasing above 50%, 66%, 75%, or 90% and subsequently 
staying above those same values prior to verification (Figure B-35).  
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Figure B-35. Lead time at which the ensemble probability-over-threshold increased above 
50%, 66%, 75%, or 90% and stayed above those percentages for the average of all times 
within an AR2+ event at 37.5N.  

In this analysis, the late December 2022 event was predicted with the longest lead-time 
prediction using this metric as compared to any prior landfalling AR2+ event since October 

2016 with 66% and 75% odds appearing (and staying above) at lead times >9 days, and with 
50% odds appearing >12 days in advance. The average values across all storms during this 
period of record include 6.4 days (50%), 5.0 days (66%), 4.2 days (75%), and 2.2 days (90%).  

 

Summary 

The framework developed by the CW3E AR Landfall Tool is leveraged to investigate the lead-
time predictability or situational awareness of the probability-over-threshold values for a given 
location. This analysis focuses on landfalling ARs at 37.5N near San Francisco to investigate the 
lead-time prediction for events during the “Deep-Dive” period for December 2022-January 2023 

and again for all AR2+ storms for a period for October 2016 thorugh January 2023. In both 
analyses it was shown that the NCEP GEFS ensemble probability-over-threshold can provide 
situational awareness and information of an impending storm at lead times of ~5 days using a 
66% threshold with individual events such as the one in late December 2022 containing lead 
times >9 days, or individual events such as the one in February 2019 containing lead times <3 
days. 
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B.5 West-WRF and its skill: Machine learning and A.I. 

Contributing Authors: Agniv Sengupta, Center for Western Weather and Water Extremes 



 182 

Background 

Quantitative precipitation forecasts (QPFs) and forecasts of integrated vapor transport (IVT) 

provide crucial information to water managers for mitigating urban, riverine, and flash flood 

risks. In addition, such forecasts have the potential to guide decisions related to reservoir, 

agricultural, and irrigation management. Forecasts from numerical weather prediction (NWP) 

models have a prominent role in informing better decision-making. NWP models are based on 

our best understanding of the dominant physical processes and the most advanced numerical 

procedures to integrate the equations describing atmospheric evolution. However, they are 

contaminated by errors in initial conditions, numerical approximations, incomplete 

understanding of underlying physical processes, and the inherent chaotic nature of the 

atmosphere.  

Recent investigations by the CW3E Machine Learning team have demonstrated that a significant 

portion of NWP model errors can be recovered in a post-processing framework leveraging 

recent advancements in artificial intelligence and machine learning. These algorithms can be 

trained to learn the dynamical model behavior over a historical period when predictions from 

the same model and observations of the quantity of interest are available.  

Machine Learning-based Forecast Products  

For the Yuba-Feather FIRO project, the CW3E Machine Learning team has been developing 

state-of-the-art ML algorithms to improve predictions of extreme weather events, with an 

emphasis on the prediction (both deterministic and probabilistic) of IVT and precipitation 

associated with ARs. These algorithms can leverage valuable information provided by West-

WRF and learn a significant portion of their biases, resulting in improved forecasts and reliable 

uncertainty quantification.   

1) Development of probabilistic QPFs leveraging the 34-year West-WRF Reforecast:  

A deep learning framework based on a U-Net convolutional network (Figure B-36) has been 

developed (Hu et al. 2023, MWR) for post-processing deterministic West-WRF predictions of 

precipitation and generating 0-5-day probabilistic forecasts of daily accumulated precipitation. 

This novel deep learning method was tested against state-of-the-art benchmark methods, 

including an Analog Ensemble, non-homogeneous regression, and mixed-type meta-Gaussian 

distribution. The U-Net was found to outperform the benchmark methods at all lead times, as 

measured by Continuous Ranked Probability and Brier skill scores, while producing a reliable 

estimation of forecast uncertainty, as measured by binned spread-skill relationship diagrams. 

Additionally, the U-Net was found to have the best performance for extreme precipitation 

events, i.e., the 95th and 99th percentiles of the distribution. 

https://doi.org/10.1175/MWR-D-22-0268.1
https://doi.org/10.1175/MWR-D-22-0268.1
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Figure B-36. Designed U-Net model architecture 

Figure B-37 shows the mean areal precipitation over the Yuba–Feather watershed, i.e., 

precipitation aggregated over the wet season starting in December 2016 from the developed U-

Net (red) compared to the dynamical benchmark (WRF; blue) and other baseline methods; 

PRISM dataset is the ground truth (black). The raw West-WRF remained close to PRISM until 18 

January 2017 when West-WRF started to overpredict. There were several major precipitation 

events on 9 January 2017, 19 January 2017, 27 February 2017, and 21 February 2017, and 

West-WRF showed significant overprediction during the latter three events, enlarging the 

difference to PRISM. On the other hand, other benchmark methods (MMGD, CSGD, and AnEn) 

all showed underprediction early on during the water year around 13 December 2016, with 

MMGD consistently producing the most underprediction among the others. The proposed U-Net 

model (red line) closely follows PRISM throughout the year and its prediction for the year-round 

total precipitation is the most accurate compared to other baseline forecasts.  

 

Figure B-37. Mean areal precipitation over the Yuba-Feather watershed in eater year 2017: 

Proposed U-Net vs West-WRF and other traditional post-processing methods. PRISM is used as 

the observational ground-truth dataset. 
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The West-WRF model post-processed with deep learning (West-WRF + Unet) has now been 

implemented operationally into CW3E’s near real-time (NRT) operational forecast system 

(Figure B-38) and is currently generating probabilistic QPFs and probabilities of 24-hour 

precipitation exceeding various thresholds (e.g., > 1 mm, > 10 mm, > 25 mm, >50 mm, >100 

mm) throughout the water year.  

 

Figure B-38. Associated near real-time (NRT) forecast product generating probabilistic 

QPFs operationally throughout the water year via CW3E’s NRT operational system 

 

2) Application of deep learning on CW3E’s West-WRF 200-member NRT ensemble:  

For this task, we utilized NWP model outputs from the 200-member ensemble of a customized 

version of the Weather Research and Forecasting (WRF) model, named West-WRF, developed 

by CW3E that is run in near-real-time forecast mode at 9-km resolution in support of decision 

making and scientific research of extreme weather events over the Western U.S. The deep 

learning application involves an Artificial Neural Network−Censored, Shifted Gamma Distribution 

model (ANN-CSGD; Ghazvinian et al. 2022) for generating post-processed, high-resolution, 

probabilistic precipitation forecasts for lead times up to 7 days.  

Figure B-39 shows the probabilities of 24-hour accumulated precipitation > 1 inch for a 

representative test case (24 December 2021) from GEFS (Figure B-39A), West-WRF 200-

https://doi.org/10.1175/JHM-D-22-0021.1
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member ensemble (Figure B-39B), and West-WRF 200-member ensemble + Deep learning 

(Figure B-39C). The application of the deep learning technique is shown to improve the skill of 

the raw forecast. It maintains the high precipitation event probabilities while reducing the 

locational biases. Furthermore, for the Yuba-Feather watershed, the deep learning post-

processed West-WRF forecast (shown in purple; Figure B-39D) outperforms all other reference 

benchmarks, including the ECMWF (green) and the raw West-WRF (red), for the period of 

assessment (Dec 2021−Mar 2022), from a lead time of 1 to 6 days.  

 

 

Figure B-39. Skill comparison among GEFS, ECMWF, West-WRF 200-mem ensemble, 

and West-WRF 200-mem ensemble + deep learning for a representative test case (24 

Dec 2021; panels A-C), and for the Yuba-Feather (panel D) 

 

3) Deterministic prediction of IVT in NRT with convolutional neural networks:  
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This study (Chapman et al. 2019, GRL) tests the utility of convolutional neural networks (CNNs) 

as a postprocessing framework for improving the National Center for Environmental Prediction 

(NCEP) Global Forecast System (GFS)'s integrated vapor transport forecast (IVT) field in the 

Eastern Pacific and western United States. Here the forecasts from 3 to 168 hours are examined 

for the cold season (October–April). GFS forecasts were separated into training (October 2008 

to April 2016), validation (October 2016 to April 2017), and testing (October 2017 to April 2018) 

data sets. IVT from NASA's Modern‐Era Retrospective Analysis for Research and Applications 

version 2 (MERRA‐2) reanalysis is used as ground truth to diagnose forecast error and for the 

CNN model training. As shown in Figure B-40, this method reduces errors in terms of RMSE at 

forecast leads from 3 hours to seven days (5–20% reduction), while increasing the correlation 

between observations and predictions (0.5–12% increase). This represents an approximately 

one‐to-two‐day lead time improvement in RMSE. 

 

Figure B-40. Temporal evolution RMSE from raw GFS, GFS postprocessed with CNN, 

Persistence, and climatology forecasts 

The CW3E ML team has implemented the associated forecast product for NRT issuance of IVT 

forecasts for lead times up to 7 days throughout the water year in the Western U.S. (Figure B-

41). 

https://doi.org/10.1029/2019GL083662
https://doi.org/10.1029/2019GL083662
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Figure B-41. Forecast product for Deterministic IVT prediction in the Western United 

States out to 7 days; forecasts are issued throughout the water year via CW3E’s near 

real-time operational system 

4) Probabilistic prediction of IVT in NRT with deep learning:  

This study (Chapman et al. 2022, MWR) explores deep learning postprocessing methods to 

obtain reliable and accurate probabilistic forecasts from single-member numerical weather 

predictions of IVT. Using the 34-year CW3E West-WRF Reforecast, dynamically derived 0–120-h 

probabilistic forecasts for IVT under AR conditions are tested. These predictions are compared 

with the GEFS dynamic model and the GEFS calibrated with a neural network over coastal 

locations (Figure B-42; top). In addition, the DL methods are tested against an established, but 

more rigid, statistical–dynamical ensemble method (the analog ensemble). NASA’s MERRA-2 is 

used as the ground truth dataset. The findings show, using Continuous Ranked Probability Skill 

score and Brier skill score as verification metrics, that the DL methods compete with or 

outperform the calibrated GEFS system at lead times from 0 to 48 h and again from 72 to 120 h 

for AR vapor transport events. In addition, the DL methods generate reliable and skillful 

probabilistic forecasts.  

Figure B-42 (bottom) shows the spread-skill plot of ensemble forecast systems which assesses 

the ability of the ensemble to quantify uncertainty with the closer to 1:1 line the better. GEFS 

model (light red) is severely overconfident. The CNN model provides statistically consistent 

https://doi.org/10.1175/MWR-D-21-0106.1
https://doi.org/10.1175/MWR-D-21-0106.1
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forecasts and indicates that it can capture the flow-dependent forecast uncertainty because its 

spread dependably reflects the forecast error variance. 

 

Figure B-42. (top) Coastal evaluation locations and climatological (Dec-Mar 1984-2019) IVT 

(color fill). (bottom) Binned spread-skill plots of forecasts from GEFS and CNN model. Horizontal 

axis represents the binned spread of the ensemble (in kg m1s1) While the vertical axis shows 

the standard error the mean (in kg m1s1) 

 

B.6. West-WRF and its ensemble: Forecast tool 

development 

Contributing Authors: Brian Kawzenuk, Center for Western Weather and Water Extremes 
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CW3E has continued to maintain, update, and provide in near-real-time decision support tools 

to visualize atmospheric processes, including atmospheric rivers, and the resulting impacts on 

the Yuba and Feather River watersheds. The watershed precipitation forecasting tool has been 

updated to include additional reservoir catchments, additional models, an optimization on timing 

for forecast generation, and updated visualizations. The tool now includes Lake Oroville, New 

Bullards Bar, and Englebright Reservoir catchment areas and forecasts from the GFS, ECMWF, 

NOAA WPC, National Blend of Models, GEFS, ECMWF EPS, CNRFC, and the West-WRF (two 

deterministic versions and the 200-member ensemble). Updated visualizations include additional 

model-to-model comparisons for all the models. Updates to several key ensemble model IVT 

forecasts were completed to enhance the reliability and timing of these products, as well as 

expand all models (GEFS, ECMWF EPS, and West-WRF) to three transects along the U.S. West 

Coast, once which transects the Yuba and Feather River watersheds. Probabilistic and percentile 

based forecast maps from the West-WRF ensemble are generated to provide additional insight 

into forecasted quantities of precipitation, snowfall, winds, and temperature over the U.S. West 

Coast. Point based forecast tools are also generated to give additional details and insight into 

forecasts from individual ensemble members within the West-WRF. 

 

Figure B-43: Seven day forecast of Integrated Vapor Transport (IVT; kg/m/s) from the GEFS, 

ECMWF EPS, and West-WRF Ensemble from each ensemble member (thin gray lines), the 

ensemble means (GEFS; dark green, ECMWF EPS; purple, West-WRF; orange, and all members; 
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light green), and plus or minus one standard deviation from the ensemble mean (red and blue 

lines and gray shading) at 39.5ᵒN 121ᵒW. 

Figure B-44: Probability of 24-hour precipitation exceeded 0.5 inches from the West-WRF 

ensemble. Probability is calculated from the number of ensemble members predicting 

precipitation greater than 0.5 inches at each grid point. 

While extreme precipitation over the Yuba and Feather watersheds is predominantly governed 

by atmospheric rivers, additional meteorological mechanisms can impact the characteristics, 

distribution, and forecast performance of precipitation within atmospheric rivers (e.g., narrow 

cold-frontal rainbands, cutoff lows, etc.). Forecast diagnostics were developed to provide insight 

into the potential likelihood for such meteorological phenomena that can cause high-intensity 

precipitation, large-scale precipitation that is not tied to orographic features, and upstream 

events that may introduce forecast uncertainty downstream. 

For example, two-dimensional Peterssen frontogenesis is now included in the suite of high-

resolution West-WRF diagnostics to assist in identifying favorable environments for the 

development of narrow cold-frontal rainbands and, therefore, high-intensity precipitation. 
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NCFRs generally form and intensify in the vicinity of a strengthening (frontogenetic) cold front 

and recognizing the potential for these features at longer lead-times will provide essential 

decision support for an ARs range of impacts. 

Additional forecast diagnostics were developed from NCEP Global Forecast System data, 

including: 

● Two-dimensional Pettersen Frontogenesis and Temperature advection for the purposes 

described above. (Figure B-44) 

● Potential vorticity, 250-hPa wind speeds, and irrotational winds to assist in identifying 

upstream events that can lead to forecast uncertainty over California (Figure B-45) 

● 700-hPa Q-Vector and Q-Vector convergence to identify regions where synoptic-scale 

conditions are favorable for precipitation that is not tied to upslope moisture flux 

 

Figure B-45: Example forecast image of ECMWF West-WRF two-dimensional Pettersen 

frontogenesis (shaded; K/100km/3-hr) for the Atmospheric River that impacted Northern 

California on the 5th of January 2023.  

 

Figure B-46: Example forecast image of GFS two-dimensional Pettersen frontogenesis (purple 

contour; K/100km/3-hr), temperature advection (color shade; K/hr), geopotential height (dam; 

black contour), and integrated water vapor (mm; gray shade) for the Atmospheric River that 

impacted Northern California on the 5th of January 2023. 

 

 

Figure B-47: Example forecast image of GFS 250-hPa potential vorticity (pvu), 250-hPa wind 
speed (m/s), 300–200-hPa layer average irrotational wind vectors (m/s), and integrated water 
vapor (mm) for the atmospheric river that impacted California on the 14th of March 2023. 
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Figure B-48: Example forecast image of 700-hPa Q-Vectors (vector 10–7 Pa m–1 s–1) , Q-
Vector Convergence (10–12 Pa m–2 s–1), potential temperature (K; red contour), geopotential 
height (dam; black contour), and integrated water vapor (mm, gray shading) for the 
atmospheric river that impacted Southern California on the 21st March 2023. 
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Appendix C – Hydrology  

C.1 CNRFC Hydrology Modeling Overview 

CNRFC streamflow forecasts are operationally available for the Feather-Yuba system as both 

five-day deterministic values as well as 365-day ensembles. Both are generated using the NWS 

Community Hydrologic Prediction System (CHPS) with common model parameters and states. 

CHPS is an object-oriented modeling framework based on the Deltares Flood Early Warning 

System (FEWS). The NWS completed its transition from the National Weather Service River 

Forecast System (NWSRFS) in 2013. CHPS is a combination of integrated and adapted models 

that describe hydrologic/hydraulic processes as well as a vast array of data and information 

handling, storage, display, and analysis tools. In the transition to CHPS, common FEWS features 

were adopted, and a collection of NWSRFS-specific models and tools were adapted into the 

framework. 

The specific models deployed by the CNRFC are quite consistent across their area of 

responsibility (Figure C-1), but the models for each location are individually configured and 

calibrated to approximate observed streamflow when presented with observations of 

precipitation, air temperature, and freezing level elevation. CNRFC models are classified as 

empirical or “process simulation.” They are not rigorous physically based models that attempt to 

capture the full physics of watershed behavior. CNRFC model applications are “semi-lumped” as 

opposed to an interconnected grid network. Watersheds with large elevation ranges are 

typically modeled in two to three elevation bands to better represent elevation-dependent 

processes, features, and conditions. CNRFC watershed models are run with a six-hour time step 

and riverine models are run with an hourly time step. 
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Figure C-1. Watershed and riverine models deployed by the CNRFC within the CHPS 

framework 

The generalized process used to generate the 5-day deterministic forecasts is shown in Figure 

C-2. Here, the CHPS hydrologic models are presented with new observations and updated 

meteorological forecasts with each forecast cycle. There is at least one forecast cycle per day 

(365 days/year), with two on weekdays in the winter and up to four during flood events. As well 

as needing the latest weather forecast, reliable streamflow forecasts depend on quality control 

of observations and the monitoring and tuning of model states. In conducting forecasting 

duties, hydrologists work their way through the model topology for each river basin, making the 

necessary adjustments to the observational data and model states to achieve (1) a good fit of 

the simulated streamflow to the observations during the last several days and (2) confidence in 

the streamflow forecast given the forecast meteorology. When complete, the forecasts are 

packaged into graphics and text products used to generate public watches and warnings and to 

help with resource management decisions (e.g., reservoir releases). Current and archived river 

forecasts can be found on the CNRFC website (www.cnrfc.noaa.gov). 

 

http://www.cnrfc.noaa.gov/
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Figure C-2. Generalized forecast process used by the CNRFC to generate five-day deterministic 

streamflow forecasts 

 

The CNRFC model topology for simulating and forecasting the Feathery-Yuba watershed are 

shown in Figures C-3 through C-8. This is a highly regulated system, and the CNRFC attempts 

to model the regulation for the short range deterministic and ensemble (< 30 days) streamflow 

products. The reservoirs modeled are indicated by squares, and diversions are dashed lines. It 

should be noted that none of this regulation was accounted for in the hindcast effort but is 

implemented into the short-range operational streamflow forecast products. 
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Figure C-3 North and Middle Yuba River Topology 

 

Figure C-4 South Yuba River Topology 
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Figure C-5 Lower Yuba River Topology 

 

 

 

Figure C-6 Middle Fork Feather River Topology 
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Figure C-7 North Fork Feather River Topology 

 

Figure C-8 Lower Feather River Topology 
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Hindcast Scaling Details 

The dates and scale factors associated with the hindcast scaled events are in the following 

table: 

 

Historical Event Scale Window Scale Factor Range 

1986 2/15/1986@12:00GMT - 
2/20/1986@6:00GMT 

1.0 to 1.5 @ 0.1 increments 
& 1.02, 1.04, 1.06, 1.08, 
1.12, 1.14, 1.16, 1.18 

1997 12/29/1996@6:00GMT - 
1/3/1997@0:00GMT 

0.9 to 1.3 @ 0.1 increments 
& 1.02, 1.04, 1.06, 1.08, 
0.84, 0.86, 0.88, 0.92, 0.94, 
0.96, 0.98 

Mar 1995 3/8/1995@12:00GMT - 

3/13/1995@6:00GMT 

0.5 through 1.5 @ 0.2 

increments 

May 1995 427/1995@18:00GMT - 
5/2/1995@12:00GMT 

0.7 through 1.9 @ 0.2 
increments 

Table C-1  

 

Appendix D – Observations 

D.1 Network evaluation: survey 

Metadata for all stations available on CDEC were pulled and sorted for owners and operators of 

each station for both the Yuba River and Feather River watersheds. Stations were grouped by 

operator and summarized by the observations collected at each station. Surface meteorology 

(air temperature, relative humidity), precipitation (rain and snow), and streamflow observations 

are of particular interest because they are readily integrated into models and forecasts. 

Streamflow observations were evaluated as part of the Forecast Coordinated Operations 

program, so this network evaluation and survey focuses on surface meteorology and 

precipitation. Snow course sites were also left out of this survey since there is a standard 

protocol separate from in situ stations for how those data are maintained. 

Operators maintaining surface meteorological stations and precipitation gauges were surveyed 

on data quality control, sensors used, whether they operate offline stations, and CW3E website 
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usage. Figure D-1 and Table D-1 summarize the stations and operators assessed and surveyed 

for the network evaluation. 

 

Figure D-1. All stations included in network evaluation and assessed for network survey colored by 

operator.  

Operator/agency Summarized stations 

available on CDEC? 

Survey sent? 

Browns Valley Irrigation District X X 

CA Dept of Water Resources X  

Central Sierra Snow Lab X  

Joint Water Districts X  

National Park Service X  

National Weather Service X X 

Nevada County X X 

Nevada Irrigation District X X 

Pacific Gas & Electric X X 

Plumas Corporation X  

Plumas County X  

Sierra Pacific Industries X X 

South Feather Water and Power 
Agency X X 
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Sutter County X  

US Army Corps of Engineers X X 

US Forest Service X X 

US Geological Survey X  

Yuba Water Agency X X 

Table D-1. Operators identified for the Yuba River and Feather River watersheds and whether the 

inventory of stations was summarized and a survey was distributed. 

60% of the operators surveyed responded. This past water year was particularly taxing on 

operations across the state so many operators were unavailable to respond for a variety of 

reasons. It is a continued effort to correspond with operators to gather valuable information 

about their networks. 

Respondents reported that stations in their networks experience outages infrequently. 

Backfilling data from outages and quality control of data are specific to operator and sensor 

type. 60% of respondents said they QC their precipitation data, however only 20% of 

respondents send the QCed data to CDEC. The 40% that do not send QCed precipitation data 

to CDEC reported that there was not a robust process in place for them to send the corrected 

data. 

 

D.2 Monitoring network updates: CW3E and partners 

The USGS, in partnership with DWR, are planning an additional 30 stations to monitor soil 

moisture in the Feather River watershed. These stations have been scouted using the Basin 

Characterization Model (Flint et al. 2021) to fill spatial gaps based on landscape characteristics. 

The USGS soil moisture stations are planned to be deployed over the next couple of years and 

CW3E is coordinating potentially co-located stations for comparing soil sensors. Our groups are 

also planning to participate in fieldwork together for knowledge-sharing about each group's 

respective station protocols. 
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Figure D-2. CW3E stations deployed in support of FIRO (solid markers) and prospective stations to 

continue filling gaps identified through the FIRO process (hollow markers and shaded region). Locations 

marked with an asterisk indicate sites scouted to fill gaps identified by the cluster analysis in the PVA, 

particularly the cluster that lacked existing soil moisture stations. 

The remaining SMOIL installations for CW3E include several locations in the Feather River 

watershed. CW3E is coordinating with USGS and Plumas Corporation to site the stations based 

on our group’s respective permitting strengths, USGS has a multi-forest agreement with USFS 

and CW3E has the benefit of being able to permit with private landowners. The locations 

marked with asterisks in Fig. D-2 highlights the areas where CW3E can or has pursued station 

locations with private landowners to help fill spatial gaps in soil moisture monitoring in the 

Feather River watershed. 

  

Name Watershed Code Latitude Longitude 
Elevation 

(m) Station Type 
Installation 

date 

Skyline 
HarvestS Yuba SKY 39.470969 -121.091673 833 SMOIL Oct 2019 

Northstar 

Meadow* Yuba NSM 39.605249 -121.071594 1235 SMOIL Aug 2020 

Lower 
Bathhouse 

(SFSU)H Yuba LBH 39.624073 -120.577654 1680 Disdro Met Oct 2020 
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DownievilleH Yuba DLA 39.5634 -120.8242 901 Rad Met Oct 2019 

New Bullards 
Bar DamH Yuba NBB 39.396359 -121.1437698 634 Rad Met Dec 2019 

Feather River 
College Feather FRC 39.945873 -120.969701 1044 SMOIL Nov 2019 

Marysville, 
Kibbe Road Yuba USYUB 39.220808 121.482356 30 Launch 2019 

Truckee radar Martis Cr. TRK 39.328435 120.122274 1789 MRR 
Mar - June 

2020 

Browns Valley 

School Yuba BVS 39.23586 -121.40621 71 SMOIL Apr 2021 

Portola Feather POR 39.8175 -120.4969 1509 SMOIL Oct 2021 

Sycamore 
Ranch* Yuba SYR 39.22389 -121.407016 46 Stream Aug 2021 

Little Dry Cr.* Yuba LDM 39.256644 -121.39706 65 Stream Aug 2021 

Upper Dry 

Cr.* Yuba UDC 

39.25127

7 

-

121.350107 236 Stream Aug 2022 

Heart K 
Ranch Feather HKR 

40.06782
2 

-
120.693752 1150 SMOIL Aug 2023 

 

Table D-2. Observations added in support of FIRO objectives. * = not telemetered (as of September 
2023). S = non-standard soil pit depths because bedrock was reached. H = Heated tipping bucket. New 
stations installed post-PVA are in bold. 

References: 

Flint, L.E., Flint, A.L., and Stern, M.A., 2021, The basin characterization model—A regional 

water balance software package: U.S. Geological Survey Techniques and Methods 6–H1, 85 p., 

https://doi.org/10.3133/tm6H1. 

 

D.3 Radiosonde sampling 

CW3E has been conducting winter radiosonde sampling from Marysville, CA (USYUB) since 

water year 2021. The USYUB radiosonde launch location is located near the foothills of the 

Sierra Nevada just west of the Yuba River watershed. Radiosondes collect vertical transects of 

air temperature, humidity, air pressure, and wind speed and direction during their ascent and 

descent and the data are sent directly to the Global Telecommunications System upon 

completion of each launch. These data are then readily assimilated into weather forecast 

models worldwide. Since installation, 208 radiosondes have been launched from USYUB (see 

Figure D-2 for water year 2023 radiosonde trajectories). Radiosonde sampling is also a key 

https://doi.org/10.3133/tm6H1
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component of AR Reconnaissance, and the observations are used in efforts to improve models 

and forecasts (see section 5.2.3.c AR Reconnaissance for more detail). 

A subset of radiosonde launches in water year 2023 were called to investigate how 

representative the WWRF freezing level forecasts within the Yuba watershed were to the 

radiosonde freezing level. This is ongoing work to be completed post-FVA.  

 

Figure D-2. Radiosonde trajectories for all radiosondes launched during the water year 2023 

winter sampling period. Flight paths colored by date (black = earlier in the season, yellow = 

end of the season). USYUB is the Marysville, CA launch location. 133 radiosondes were 

launched for the 2023 season. 

D.4 High elevation precipitation 

Both the Yuba and Feather watersheds have an extensive snow observational capacity.  The 

Feather watershed has 10 snow pillows that measure the snow water equivalent (SWE) on an 

hourly basis. Many of these stations are also being upgraded to sample the snow on a 15-

minute basis. Snow pillows across the Feather sample a large elevational gradient with a 

maximum elevation of 8,338 ft (Lower Lassen Peak) and a minimum of 5,202 ft (Four Trees).  

The average April 1st SWE at these locations are 73” and 19.3”, respectively. Note that while 

Four Trees experiences less snow accumulation, it is not necessarily drier but rather has a 

higher rain-to-snow ratio than Lower Lassen Peak. 

Measurement errors at many of the telemetered snow pillows necessitate occasional winter 

“control” measurements. Control measurements are taken using a Federal Sampler, usually at 

all four corners of the snow pillow. The measurements are averaged and the difference 

between the snow pillow SWE and the control is sometimes used to adjust the reported snow 
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pillow observation. Of the 10 snow pillows, only Lower Lassen Peak and Pilot Peak have not 

received control measurements over the past 5 years. Note that this may be due to their 

remote locations.  

Of the 10 snow pillow sites, 4 locations also have snow courses. Snow courses predate snow 

pillows by decades and involve a snow surveyor sampling the snow with a Federal Sampler—

usually once a month starting in January and ending in April—across a transect of 

approximately 10 points. The snow courses at snow pillow sites can be used as a “control” for 

snow pillow sites.  In total there are 25 snow courses in the Feather basin.  Online snow course 

records begin in 1930, with the lowest sitting at 4,600 ft (Chester Flat), and the highest at 

7,449 ft (Mount Dyer 1).  The mean April 1st SWE across all 25 snow courses is 23.16”.  

The Yuba has 4 snow pillow sites, with the lowest-elevation station (Sunnyside Meadow, 6,300 

ft) installed most recently in October 2019. The highest station sits at 7,200 ft (Meadow Lake), 

with an average April 1st SWE of 48.7”. In general, Yuba snow pillow sites are “higher” than in 

the Feather (by about 100 ft), but the average April 1st SWE is roughly 23% greater. However, 

the Yuba snow pillows sample a narrower fraction of the watershed hypsometry than the 

Feather pillows. Roughly 80% of the Yuba basin area exists at elevations below the lowest 

snow pillow (compared to 50% in the Feather), and 5% lies above the highest snow pillow 

(compared to 1% in the Feather).  

Control measurements are rarely taken in the Yuba. The Central Sierra Snow Laboratory (a UC 

Berkeley facility) snow pillow and snow survey are owned and operated by the Natural 

Resources Conservation Service (NRCS) as part of the Snow Telemetry (SNOTEL) network and 

are therefore not subject to the DWR control measurement program. Only Meadow Lake 

experiences regular control measurements of the four stations.  However, while control 

measurements are sparse, the Yuba does have a relatively more expansive snow course 

network—particularly in the southeastern quadrant of the basin.  Snow courses occur as low as 

4,850 ft and extend to 7,800 ft covering a larger extent of the basin hypsometry than the snow 

pillows. The mean April 1st snow course SWE is 33.7”, with the earliest measurement dating to 

1910 and an average start date of 1939.  Note that while snow pillow observations benefit from 

frequent sampling to assess storm-scale changes to snowpacks, the less-frequently sampled 

snow course observations benefit from spatially broader and consistent measurements that can 

more comprehensively assess the snowpack storage in a given water year to support spring-

summer streamflow forecasting.  

Metadata and geolocation of snow pillow stations remain problematic in both the Feather and 

Yuba watersheds (Table D-3). For example, most stations could not be reliably “geo-identified” 

using high-resolution satellite imagery (Google Earth, NAIP, etc.). Geolocation errors naturally 

contaminate comparisons of stations to gridded datasets. Pictures of snow study sites (like 

NRCS) would not only aid geo-identification but also help to improve our understanding of the 

station “layouts” and representativeness. For example, collocated snow depth and SWE 

measurements are critical to proper bulk snow density estimates. Moreover, whether snow 

pillow sites are densely surrounded by trees (or not) deeply affects the energy balance of the 
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snow, which is fundamental to model comparison/evaluation. Finally, knowledge of instrument 

changes (or upgrades) is also key to understanding a site’s ability to measure atmospheric river 

activity.  For example, shifting from acoustic snow depth sensors to laser-based snow depth 

sensors is critical to capturing storm timing and evolution. While researchers can subjectively 

“guess” when instrument changes have occurred due to changing data quality, having the 

metadata to confirm these switches is crucial.   

  

Basin CDEC 
code 

Latitude Longitude Location 
Google 

Earth 
verified? 

Elev. (m) Sensor notes 

Feather LLP 40.466602 -121.50811 

Can’t verify  

2541 

Temp (hourly)), RH 

(hourly), Sdepth (event) 

Feather KTL 40.14 -120.715 
Can’t verify 

2225 
Precip (hourly), Temp 
(hourly) 

Feather GRZ 39.917 -120.645 

Can’t verify 

2103 

Precip (hourly), Temp 

(hourly) 

Feather PLP 39.785892 -120.877777 
Accurate 

2073 
Precip (hourly), Temp 
(event), Sdepth (event) 

Feather GOL 39.674767 -120.617167 
Accurate 

2057 
Precip (hourly), Temp 
(hourly) 

Feather HMB 40.115 -121.368 Can’t verify 1981 Precip (hourly) 

Feather RTL 40.12791 -121.04397 
Accurate 

1893 
Precip (hourly), Temp 
(hourly) 

Feather HRK 40.418 -121.275 
Maybe 

1890 
temp (hourly), Sdepth 
(hourly), RH (hourly) 

Feather BKL 39.85292 -121.25135 Maybe 1790 Precip (hourly) 

Feather FOR 39.81278 -121.32168 

Maybe 

1586 

Precip (hourly), Sdepth 

(event|2022), Temp 
(event) 

Yuba CSL 39.325 -120.367 

Accurate 

2103 

Precip (hourly), Temp 
(hourly), Sdepth (hourly 

@nrcs), Soil moist (hourly 
@nrcs)  
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Yuba MDW 39.405663 -120.506058 
Maybe 

2195 
Temp (event), RH (event), 
Sdepth (event) 

Yuba RCC 39.621864 -120.679871 
Maybe 

1975 
Temp (event), RH (event), 
Sdepth (event) 

Yuba SSM 39.698132 -120.782211 

Maybe 

1920 

Temp (event), Sdepth 
(event), RH (event), Soil 

moisture (event)  

Table D-3. Snow pillow metadata for stations in the Yuba River and Feather River watersheds. 

Finally, continuing to build out snow pillow observation sites with disdrometers, laser-based 

snow depth, and soil moisture sensors is critical to understanding of the role of atmospheric 

rivers on snow and downstream hydrologic processes. The presence of disdrometers removes 

the need for precipitation phase proxy measurements; laser-based snow depth provides 

accurate and precise measurements of snowfall accumulation timing and magnitude; and soil 

moisture aids in the understanding of whether snow is “absorbing” or “transmitting” liquid 

water to the land surface during intense, warm atmospheric river events.   

 

D.5 Freezing level 

 

Figure D-3. Hypsometry of the Feather River watershed with locations of snow pillows (circles) plotted 

(left) and histogram of observed freezing levels from NOAA’s FMCW radar in Oroville, CA (374 ft 

elevation) over the last five winters binned by elevation (right). 
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Figure D-4. Stations referenced for freezing level verification. FMCW radars (magenta diamond) and 

CW3E MRRs (orange diamond) measure snow level in the atmosphere. CW3E disdrometers (at orange 

diamonds and orange hexagon) measure precipitation phase at the surface. Additional surface 

observations referenced include SWE (blue triangles), air temperature (red and purple dots), and 

precipitation (blue and purple dots). SWE stations with collocated instrumentation have the markers 

overlaid. 

 

D.6 Quantitative precipitation estimation 

We obtained the raw hourly precipitation data from CNRFC and perform a quality control (QC) 

for all the hourly gauges following CNRFC QC procedures with minor adaptations. The raw 

precipitation gauge data sources include: the Geostationary Operational Environmental 

Satellites (GOES) Data Collection Platforms (DCPs) [data received from the NOAA 

Hydrometeorological Automated Data System (HADS)], ALERT (Automated Local Evaluation in 

Real Time) system (data collected locally at the county/water agency), the California 

Department of Water Resources (CA DWR)/the California Data Exchange Center (CDEC) 

gauges, SNOTEL data (queried from the NRCS database by MADIS), as well as the Automated 

Surface/Weather Observing System (ASOS/AWOS) gauges. The monthly precipitation from the 

Parameter-Elevation Regressions on Independent Slopes Model (PRISM; Daly et al. 1994, 2008) 

is used to define the background climatology.  
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As part of the QC process, we calculated ratios between hourly gauge precipitation and the 

PRISM climatology at station grid nodes, following the MM method. For a target gauge, we use 

nearby 5 stations with non-missing and non-bad observations within 100 km. We interpolate 

their ratios onto the target station grid using the IDW method. If the normalized deviation of 

the target gauge value (from the estimation by nearby gauges) is within a certain threshold, 

which is selected by a sensitivity test, the observation is considered passing the QC.  

Similarly, the gridded hourly precipitation estimation can be obtained by multiplication of the 

gridded ratios with the PRISM climatology. CNRFC adopts manual screening for the 6-hourly 

QC’d precipitation product after the automatic QC procedures.  

The tool uses precipitation gauges that are used in the CNRFC’s 6-hourly QPE product to ensure 

that our products are comparable (see Figure D1 for gauge locations; raw gauge data were 

sourced from multiple databases (See Appendix D)). The Mountain Mapper (MM) method, uses 

an inverse distance weighting (IDW) approach to estimate precipitation at a certain location 

within the domain by considering the climatology of precipitation and observations from gauged 

locations. Hourly precipitation data were quality controlled and evaluated against the 

precipitation climatology (see Appendix D). The 6-hourly gauge data produced by CW3E were 

compared to CNRFC’s 6-hourly gauge data to ensure the performance looks reasonable (see 

Figure D2).The QCed gauge precipitation data are an input to the MM-based QPE product. 

The performance of the Machine Learning (ML) product was assessed via root-mean-square 

error, spatial correlation, and bias in which it outperformed both IDW and MM. 

 

Figure D-5. Map of hourly precipitation gauges 
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Figure D-6. Hourly quality-controlled precipitation aggregated to 6-hourly versus CNRFC 6-

hourly quality-controlled precipitation 
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Figure D-7. An example of the gridded QPE developed by different methods on 2021/01/27 at 

1 PM. The four panels show quality-controlled gauge data, QPE products developed by Inverse 

Distance Weighting (IDW) interpolation, Mountain Mapper (MM), and Machine Learning 

(Artificial Neural Network (ANN)), respectively. Yuba River and Feather River watersheds are 

outlined. 

  



 212 

Appendix E – Verification  

E.1. QPF error tendencies  
 
Deterministic forecast evaluations of global and regional forecasts were provided in the Yuba-
Feather PVA.  In short, top 10 percentile events using 72-hour precipitation were shown to have 
skill metrics exceeding appropriate thresholds out to 6–8-day lead time.  The West-WRF 
reforecast (the regional model), had better variance explained but had larger random errors, 

suggesting that some bias correction could be made to improve forecasts.  Many of the 
statistics imply the overall skill of the weather modeling system but could be skewed based on 
the influence of a few key events.  This section describes the frequency of forecast errors and 
how overforecasts and underforecasts contribute to the overall error patterns.  
 

This investigation utilizes the CW3E West-WRF reforecast (Cobb et al. 2022), which contains 34 

years of precipitation forecast data at a 3 km resolution over California, Oregon, and southern 
Washington.  Mean areal precipitation (MAP) is computed over the Upper Yuba River and 
Feather River watershed at the HUC8 level between 1 December and the following 31 March for 
lead times of 1 through 5 days.  The forecasts are compared to observations from the Stage-IV 
quantitative precipitation estimate (QPE) from 2004 to 2018.  Forecast errors are computed on 
24-hour totals and the tendencies of total seasonal error, occurrences of overestimations and 
underestimations, and the percentage of error from the top 3 bust forecasts to the total 
forecast error.  Similar results are found for the North Fork of the Feather (figures E-3 and E4). 
  

In summary, the QPF errors on average tend to be consistently more overestimated than 
underestimated over the Upper Yuba River basin across all lead times (Figure 5-14) and the 
impact of the overestimated QPF is larger than the impact on underestimating QPF (Figure 5-
15) with respect to total QPF error.  This result is most robust at the 2 and 3-day lead times of 
total QPF error (where the black vertical lines do not overlap between the overestimations and 
underestimations) in the number of events and for 1 and 2-day lead times for total QPF 
error.  At lead times where they do overlap, the data suggest that there are some water years 

where the overestimations and underestimations are more similar in frequency and impact.  It 
is important to understand these error tendencies because it is a pivotal first step in the process 
to improve model forecasts.  Trends in the model forecasts can be isolated, identified, and 
investigated for future model skill improvements.  
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Figure E-1. Frequency of overestimated (red) and underestimated (blue) MAP QPF error over the Upper 
Yuba basin as a function of forecast lead time (days).  The height of the bars represents the average 
error of the winter season (Dec-Mar) over a 14-year period, and the black vertical lines represent one 
standard deviation around the mean.    
 

  
Figure E-2. Same as Figure E-1 for MAP QPE total error over the winter season from Dec-Mar.  
 

 
 

Figure E-3. Same as Figure E-1 for the North Fork Feather watershed. 
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Figure E-4. Same as Figure E-2 for the North Fork Feather watershed. 

 

E.2. Freezing Level Evaluation  
 
The partitioning of rain and snow remains an important forecasting challenge for areas of the 
Sierra Mountains due to the hydrologic impacts on runoff generation and snowpack 
accumulation during precipitation events. Forecasting precipitation as frozen vs. liquid has 

significant implications for water management strategies. Freezing levels (ZFL) are often used 
as a proxy for indicating where frozen precipitation might occur as it explicitly represents the 
altitude of the 0°C isotherm of the vertical temperature profile. As reported in the PVA, 
Sumargo et al. (2020) found inflow volume uncertainties of under 10 percent to over 50 percent 
of the flood pool storages at the Oroville and New Bullards Bar, depending on the ZFL, 
antecedent moisture condition, and precipitation event magnitude, using an average ±350 m 
ZFL forecast error.  
 

Forecasts of ZFL at Oroville and Colfax were previously assessed during the Yuba/Feather PVA 
using archived near-real time CNRFC data and Frequency-Modulated Continuous Wave (FMCW) 
vertically profiling radars (Johnston et al. 2017). However, this assessment leveraged FMCW 
brightband heights, or altitude of the maximum radar reflectivity, as observations and thus only 
represented forecast skill of above-terrain freezing levels. It was recommended that forecasts 
correctly predicting freezing conditions at the surface should also be examined to convey the 
skill of snowing conditions.    
 

The discrepancy between the characteristics used to define partitioning of rain and snow (e.g. 
ZFL, brightband height, melting layer, and snow elevation) was not addressed in the PVA. 
Brightband heights, indicative of the altitude at which snowflakes partially melt and transition 
into rain, offer insights into precipitation processes. Concurrently, the 0-degree isotherm 
delineates the boundary between freezing and non-freezing temperatures within the 
atmosphere. To make robust forecast skill assessments, the same physical measurements 

should be compared. Figure E-5 shows a schematic representation of the different altitudes, 
and therefore variability, between brightband heights, ZFL, and melting layers. The 0°C 
isotherm is assumed to be above this layer to compensate for the time/depth of melt to occur 
and subsequent hydrometer makeup. To utilize profiler observations as a verification source for 
freezing level forecasts, the difference between the two measurements must be resolved 
because the observations, models, and physical representation of the rain/snow partitioning 
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may all be different. Most importantly, it affects the level of precision at which one can define 
freezing level forecast skill.  
  
This section describes the extension of the ZFL forecast assessments of the PVA that address:  

• Correct forecasts of freezing conditions at the surface  

• The investigation of differences between brightband height and ZFL  
• Investigations on the variability of freezing level across complex topography is 

summarized in Appendix E.1   

  
Figure E-5. Schematic of the height (altitude) 0°C isotherm (“Freezing Level” of ZFL), brightband height 
(“radar-derived snow level”) that is detected by the vertical profiler, melting layer, and the difference 
between the brightband height and 0°C isotherm (ΔZ). A reference line for missing reflectivity under 200 
m is denoted by the black dot-dash line.  
 

The investigation of correct forecasts of snowing/freezing conditions at the surface was 
evaluated during the WY2023 season, to leverage several observation types and available high 
resolution forecast data at the same time -- for the first time possible. We evaluated the skill of 
the forecasts that accurately predicted freezing conditions when snow was observed. The model 
forecasts were extracted from CW3E’s West-WRF near-real time system, in which forecast 
predictions are made at 3 different spatial resolutions within the Yuba/Feather region: 9 km, 3 
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km, and 1 km. In this case, the deterministic forecast with initial and boundary conditions from 
the GFS model (West-WRF/GFS) are evaluated. The 1 km data was produced for the first time 
during WY2023. The ZFL forecasts were compared to grid cell elevation within West-WRF to 
determine whether freezing conditions were observed at the surface. A buffer of 200 m was 
used to account for the difference between freezing level height and the translation of fall 

speed and altitude of melting hydrometeors. Disdrometer data, from which precipitation phase 
can be derived from the distributions of drop size and fall velocity, was used to identify times of 
snowing conditions as a source for verification. This analysis was conducted for two locations: 
Downieville (DLA, 901 m/2956 ft), and Lower Bath House (LBH, 1,680 m/5,512 feet). Forecasts 
of snowing/freezing conditions at the surface were expressed with contingency table metrics 
(Contingency Table, 2008, Figure E6).   
 

• A forecast hit required that the West-WRF forecasts predicted snow (>=0.5 mm), the 
forecasted freezing level <= 200 m above the grid cell elevation, and the distrometer 
reported snow (>0.5 mm).   

• A forecast miss is when the forecast did not predict snow but the distrometer measured 

snow, or the forecast predicted snow but the forecasted freezing level was > 200 m 
above the grid surface.  

• A forecast false alarm is when the forecast predicted snow, the freezing level forecast is 
near (<200 m) or below elevation, but the disdrometer did not measure snow.  

• A forecast correct negative is when the forecast did not predict snow, the freezing level 

is above terrain (=>200 m), and the distrometer did not measure snow.  
 

Skill is expressed in terms of the Critical Success Index (CSI=Hits/ (Hits+Misses+False Alarms)) 
and probability of false alarms (POFA=False Alarms/ (False Alarms + Hits)). CSI and POFA 
range from 0 to 1, where the best values are 1 for CSI, and 0 for POFA.   
 

Disdrometer  
Snow Observed  

    Yes  No  

Forecast Freezing 
Level or Snow  

Yes  Hit  False Alarm  

No  Miss  Correct Negative  

Figure E-6. Contingency table scenario for forecasting freezing/snowing conditions at the surface.    

 
The investigation of the differences between brightband height and ZFL serves as a crucial 
undertaking in understanding atmospheric conditions during winter storms. The verification 
team was tasked with scoping a potential method for identifying the difference between the 
brightband height and ZFL with data specific for the Yuba/Feather region. We used a decade’s 

worth of brightband data from Frequency-Modulated Continuous Wave (FMCW) snow level 
radar (Johnston et al. 2017) at Oroville (OVL) and Micro-Rain Radar (MRR) at New Bullards Bar 
(NBB) and compared it to CNRFC’s publicly available freezing level observed grid 
(https://www.cnrfc.noaa.gov/fzlvl_guidance.php). The gridded observations represent ZFL 
instantaneous values at 6-hourly intervals and are direct derivations of the 0-degree isotherm 
from the High-Resolution Rapid Refresh (HRRR) model analysis (Pete Fickenscher, personal 
communication). Essentially, this dataset contains the best source (long period of record, high 
spatial resolution) of 0-degree isotherm ZFL overlapping the periods of available profiler 
observations. The difference of the ZFL and brightband heights were computed by first pairing 

the median value of all 10-minute profile observations within +/- 1 hour window of the valid 

https://www.cnrfc.noaa.gov/fzlvl_guidance.php


 217 

time of the gridded observed freezing level. The mean and standard deviation of all profiler-grid 
pairs were calculated for each WY between 2013 and 2023 and for all water years 
collectively.    

 
Correct forecasts of freezing conditions at the surface  
West-WRF forecast frequency analysis and skill scores of snowing/freezing conditions at DLA 
using snow observations from the distrometer are given in E-7. The differing resolutions of the 
model are important because the terrain elevation resolved in the model affects how 

representative forecasts are of a single point observation. Snowing conditions at Downieville 
were infrequent, given the large proportion of correct negatives within the forecast. There were 
proportionally more false alarms within the forecast that is most noticeable at the 9 and 3 km 
resolution. CSI values for 9 km forecasts across all lead times are only ~0.3, or 30% success 
ratio, and the probability of false alarms is ~20%. CSI increases slightly as resolution increases 
(from 9 to 1 km) using lead times of 24-45 hours. POFA also decreases. These two metrics 
together indicate some benefits of high-resolution forecasts. However, these findings suggest 
that correctly forecasting snowing events (with subzero temperatures at the surface) remains 
challenging, given the relatively low CSI. Similar results were seen at LBH.    

 
It is important to note that the grid cell elevation of the model terrain is often not the exact 
same as the altitude of the disdrometer. However, the goal for this analysis was to determine if 
the model’s elevation/snow compatibility was representative of surface conditions at the point 
location. We found that the results can be sensitive to the sign of the difference between the 
grid cell elevation and the observation elevation -- higher grid cell elevations can be 
disproportionately “more correct” because higher freezing levels are more frequent. This 
analysis suggests more in-depth studies are needed to affirm resolution impacts on freezing 
level forecast skill.  

Figure E-7. Forecast skill of freezing level at Downieville, CA during WY2023: Number of instances 
(counts) in which West-WRF (WWRF) forecasts are considered hits (blue bars), misses (orange bars), 
false alarms (green bars), and correct negatives (red bars), along with the forecast skill values of the CSI 
(black line) and POFA (red line) as a function of lead times using the 9 km (left), 3 km (middle), and 1 
km (right) forecasts. All 3-hourly forecast–observation pairs within the e.g. 24–45-hour lead time are 
evaluated together. The 1 km forecast only extends out to 72 hours.   
  

The investigation of differences between brightband height and ZFL  
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The goal of this assessment is to quantitatively determine a value of the offset (Δz) between 
ZFL and brightband heights and ultimately remove it from either the observation or forecast for 
a more robust comparison. The mean Δz will indicate average offset between the ZFL and 
brightband height, and the standard deviation of Δz will indicate whether the mean is 
representative of most data. In other words, if the standard deviation is small, then the mean 

value is an accurate representation of the offset. The mean and standard deviation of Δz at OVL 
are given in E8. Over all years examined, the mean Δz is -187.5 m, and the standard deviation 
364.5 m. This translates to a condition in which the actual offset can be as small as 0 m or as 
large as 552 m. This last value largely exceeds the value used in Sumargo et. al -- meaning, the 
difference between ZFL and brightband height could represent an even larger proportion of 
uncertainty, and therefore larger proportion of flood pool space) for runoff events.   
 

  
Figure E-8. Box plots of the differences (Δz, m) between the ZFL and brightband height from the FMCW 
at OVL as a function of water years between 2013-2023 (all water years are summarized in the last box 
plot). The mean (𝞵) and standard deviation (𝞼) of Δz are listed above each box plot. All data values are 
plotted as black dots, the edges of the box correspond to the interquartiles (25th, 75th percentile), and 
the whiskers correspond to the 5th and 95th percentiles of the data distribution.    
 

The investigation of freezing level variability over complex terrain 
 
The investigation aimed to assess the variability of freezing levels over complex topography by 

examining forecast data from West-WRF models at different spatial resolutions. A transect was 
created, extending from the Central Valley to the Sierra Nevada Crest, with a specific focus on 
New Bullards Bar. This transect served as the primary sampling path, capturing a range of 
elevations and topographic features. Forecast data at three different spatial resolutions—1 km, 
3 km, and 9 km—were interpolated along the transect to understand how the resolution of the 
model affects the depiction of freezing level variability, particularly in relation to the orographic 
influence of the Sierra Nevada mountains. The time frame of interest coincided with the landfall 
of an atmospheric river (AR) event at 00Z on January 1, 2023, which provided a critical weather 
context for this analysis. Additionally, two distinct sets of initial conditions were utilized for the 

West-WRF model runs: one derived from the Global Forecast System (GFS) and the other from 
the European Centre for Medium-Range Weather Forecasts (ECMWF). This enabled an 
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evaluation of how differing initial conditions influence the predicted freezing levels in the study 
region. 
 
At the time of the AR landfall, the atmospheric conditions were expected to produce low 
elevations of the freezing level that intersected with the topography. Figure E-9 shows the 

transect of the different West-WRF forecasts going from West to East.  The different model grid 
elevations are also given for reference to show the differences in complex topography.   
The forecasts using different resolutions only differed substantially over the higher topography 
– where higher resolution forecasts were able to pick up on smaller scale variability of the 
mountain peaks.  Otherwise, the forecasts of differing resolution were identical.  The largest 
forecast variances were due to the different initial conditions:  The GFS-based forecasts showed 
freezing level lower by as much as 500m.  There are also signs of possible freezing level 
bending associated with the approach of the precipitation along the gradient of topography and 
the presence of precipitation (blue/green bars from the vertical).     

 
This research highlights the sensitivity of atmospheric processes to both model topographic 
resolution and the selection of initial conditions, emphasizing the need for high-resolution 
forecasts and robust initial condition strategies to improve understanding of freezing level 
variability in regions affected by atmospheric rivers. 
 

 
Figure E-9. Transect of 24-hr lead time freezing level forecasts (symbols) from the West-WRF model 
forced by GFS (green colors) and ECMWF (blue colors) initial conditions, spanning from the Central Valley 
to the Sierra Mountain crest, cutting through New Bullards Bar.  The blue (green) hanging vertical bars 
represent the QPF from the ECMWF (GFS) initial conditions at the time of the forecast, and the different 
model topographic resolutions are given in the black lines.   
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These analyses have several implications and generated recommendations for further research. 
The large spread between the differences in ZFL and brightband height at Oroville could be the 
result of several factors including meteorological processes (e.g. isothermal layers), the 
resolution of the model vertical structure within the source data for the gridded observations 
(recall this is the HRRR analysis), limited precision of the profiler observations, etc. In an 
attempt remove noise from the profiler data, the all-year 𝞵 and 𝞼 decreased to -137.8 m and 

209.5 m, respectively. The resolution of topography and initial conditions are important 
considerations when evaluating the forecast skill of NWP models. 

 
These important findings support further post-FVA investigations including:  
 

• Using IVT/QPE to contextualize differences, especially because latent heating can 

bend down the freezing level during intense precipitation  
• Compare freezing level from radiosondes   
• Identify times/depths of isothermal layers  
• Compute differences between hydrometeor concentrations in high resolution model 

predictions as an alternative methodology for Δz determination.  
• Include sensitivity on topographic resolution of NWP forecasts 
 

It also creates an opportunity to address the uncertainty in freezing level estimates and 
potentially engineer a new rain/snow elevation, such that it gives the CNRFC a more reliable 
estimate of rain/snow partitioning.    

  

E.3.  Inflow Forecast Evaluation  
 
Forecasts of 72-hour inflow into New Bullards Bar and Oroville were previously assessed during 
the Yuba/Feather PVA. This analysis helped to establish a methodology to evaluate AR-related 

inflow forecast skill and provide quantitative skill evaluations using the CNRFC hindcasts -- a 
dataset that mimics to a large degree the hydrologic operational ensemble forecast system 
(HEFS) -- using meteorological forecast inputs relevant at the time. This section describes the 
extension of the hydrologic forecast assessments of the PVA that address:  
 

• Potential changes in forecast skill due to new meteorological inputs that have been 

derived since the publication of the PVA  
• The need to expand to additional aggregation times (beyond 72-hours) to support 

operational timelines  
• The need for skill assessments at additional locations relevant in the decision-making 

process in the Yuba/Feather system  
• The performance of the hindcast versus current deterministic forecast information  

 
This work leverages the ensemble hindcasts generated using NWS’s HEFS in 2022. For a more 
thorough description of the HEFS system, please refer to Section 6.2 of the PVA and Section 5.3 
of this document. The assessments in the PVA leveraged the hindcasts forced with precipitation 
and temperature data from the GEFSv10, which was generated in 2015. Since then, GEFSv12 
meteorological data were generated during a new period of record (2000-2019) and the 
hindcasts were subsequently updated. The newer meteorological forcings were generated using 
updated methodologies including new dynamical cores of the model and better spatial 
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resolution. Inflow forecasts for New Bullards Bar (NBB) and Oroville (ORO) were compared 
using the two versions of the meteorological forcings-based forecasts.    
 

Skill is determined based on the Brier Score (for continuity with the PVA) and Brier Skill Score. 
Both reflect the error in probabilistic forecasts of a defined event threshold, with the skill score 
expressing skill against climatology. Lower brier scores are better, versus higher brier skill 
scores are better where BSS>0 indicates skill over climatology. Thresholds are defined by 95th 
and 80th percentiles of the observed 72-hr inflow volumes, respectively, to examine the skill of 
high flow events during AR conditions only (i.e. AR only).    
 

In coordination with the work conducted in Section 3 (Water Resources Engineering), the 
evaluations were also conducted for 1-day and 7-day total volumes to match address other 
operational timescales. Forecasts were also evaluated over longer lead times than provided in 
the PVA (now out to 13 days lead time).    

 
Potential changes in forecast skill due to new meteorological inputs used in CNRFC hindcasts  
Table E1 contains the brier scores of the CNRFC ensemble inflow hindcasts at NBB and ORO 
generated with GEFSv10 and GEFSv12 meteorological forcings. These comparisons were 
evaluated only during common overlapping periods (i.e. 2000-2010). Note, an error in the 
calculation of the brier score in the PVA was corrected, so scores in Table E1 supersede the 

PVA. Interestingly, the brier scores are lower (better) for 72-hr total volume inflows using the 
GEFSv10 forecasts than in the GEFSv12 forecasts for all lead times out to 5-7 days.    
Understanding the performance differences is a complex process with several issues to note. 
The GEFSv12 meteorological ensemble contains 31-members at production, but only 5 
members were archived through the entire period of record (a small exception is that 1 11-
member run each week was archived). This is compared to the GEFSv10, which contained 10 
ensemble members. The number of hindcast ensemble members is also different between 
versions. Changes to the MEFP used to drive the ensemble forecasts also occurred, included 1) 
moving to a new climatology which limited the number of members created from the MEFP 

distributions, 2) changing the sampling method within MEFP going from stratified random 
sampling to fixed quantile sampling, 3) recalibrating all hydro models to use freezing level to 
define the rain/snow line instead of temperature, and 4) different sampling techniques 
embedded within the MEFP (Brett Whitin, 2023 personal communication). There are also 
considerations about the precipitation skill of the GEFS, which serves as one of the input 
sources for the hydrologic model calibration.    
 

Despite the differences, both hindcast versions have brier scores near zero which implies high 
forecast skill during AR events. Several recommendations for further research to address the 
difference in the GEFS hindcast skill include: 
 

• Comparing reliability diagrams (v10 vs v12) to identify any potential important 

differences between the two MEFP sets or advantages in capturing larger events (hits 
versus false alarms)  

• Comparing MEFP outputs from the different hindcasts to understand potential sampling 
bias  

• Compare GEFS precipitation skill during the period in which hindcasts were calibrated to 

understand the impact of precipitation forcing  
   

Brier Score (AR only)  
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Lead Time 
Aggregate

  

NBB  ORO  

GEFSv10  GEFSv12  GEFSv10  GEFSv12  

1-3 days  0.063  0.076  0.042  0.051  

4-6 days  0.087  0.110  0.070  0.081  

7-9 days  0.120  0.140  0.091  0.120  

Table E-1. Brier scores of CNRFC ensemble inflow hindcasts for 2000–2010 at NBB and ORO. The scores 
are computed with an 80th flow percentile threshold, for lead time aggregates of one to three, four to 
six, and seven to nine days and AR-only conditions. Bold scores indicate the version of GEFS with better 
skill. 
 

Brier Skill Score updates for additional lead times and sites using CNRFC hindcasts  
Table E-2 contains the Brier Skill Score (BSS, higher is better) for the GEFSv12 as an update to 
the PVA findings of 72-hour streamflow from the CNRFC hindcasts. This table now includes 

scores for Englebright (ENG), as well as NBB and Oroville (ORO) out to 13 days lead time. BSS 
> 0 indicates that the forecasts are skillful beyond climatology. Using the GEFSv12 hindcasts, 
the 72-hr total volume flows have BSS > 0 out to 7-9 days lead time at all three locations. 
Additionally, the scores are aggregated to 24-hr total volumes and 168-hr total volumes. 24-
hour total volumes have BSS > 0 out to 6 days at all locations and 168-hr total volumes are 
skillful out to 7-14 days lead time.    
 

Lead Time 
Aggregate

  

Brier Skill Score (AR only) GEFSv12  

NBB  ORO  ENG  

  72-hr total volumes  

1-3 days  0.5493  0.6637  0.5369  

4-6 days  0.3343  0.4583  0.3234  

7-9 days  0.0779  0.1722  0.071  

10-13 days  -0.1588  -0.0476  -0.1278  

  24-hr total volumes  

1-day  0.3706  0.5493  0.4362  

2-day  0.4087  0.5223  0.486  

3-day  0.3077  0.4186  0.3768  

4-day  0.1813  0.3671  0.2839  

5-day  0.1601  0.254  0.2194  

6-day  0.063  0.1254  0.0972  

7-day  -0.118  -0.0569  -0.0534  

8-day  -0.196  -0.1637  -0.1482  

9-day  -0.3377  -0.3073  -0.2574  

10-day  -0.4336  -0.381  -0.3581  

  168-hr total volumes  

1-7 days  0.064  0.053  0.068  

8-14 days  0.160  0.120  0.130  

Table E-2. Brier skill scores of CNRFC ensemble inflow hindcasts for 2005-2019 at NBB, ORO, and ENG 
only during AR conditions. The scores are computed with an 80th flow percentile threshold, for lead time 
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aggregates of 72-hours, 24-hours, and 168-hours.  Bold scores indicate lead times where skill is better 
than climatology.  

 
Performance of the hindcast versus current deterministic forecast information  
A comparative analysis was conducted between the operational CNRFC deterministic forecasts 
and the 75th percent exceedance value of the hindcast for 72-hour total volumes at 1–3-day 
lead times.  It is often noted that the 75th percent exceedance value of the operational 
ensemble forecast aligns well with the deterministic forecast; therefore, using the 75th 
percentile value of the hindcast is one way to directly compare the model performance of data 
used to support water resources engineering research (and the assessments herein) with what 
is currently used operationally for water management decision support in the Folsom Dam and 

Lake WCM.  Additionally, FIRO alternatives ID3A for both ORO and NBB use 75% NEP for daily 
volumes up to 7 days (Section 3). In summary, the coefficient of determination (R2) is higher in 
the operational forecasts at NBB and ORO and the RMSE is smaller.  This suggests that 
operational forecasts may have better skill than what was assessed herein with the hindcasts.    
Additionally, performance of the operational deterministic 72-hour inflow volume forecasts for 
Englebright, Oroville, and New Bullards Bar at the 1–3-day lead time was evaluated.  In short, 
the variance explained by the forecast was 76%, 89%, 86%, respectively.  This demonstrates 
that the forecasts are capturing a large majority of the observed forecast variability.   
  

E.4. Meteorological Ensemble Forecast Evaluation  
 
Meteorological probabilistic forecasts play an important role in providing uncertainty estimates 
amongst single forecast predictions. Ensembles provide a range of possible outcomes that can 
be filtered to express likelihoods of precipitation, IVT, etc. The PVA assessed several different 

deterministic (or ensemble mean) forecast products to convey skillful lead times of extreme 
precipitation. This section describes the extension of meteorological forecast skill assessments 
in the PVA with additional evaluations of ensemble forecasts of precipitation and landfalling 
IVT.     

 
CW3E has been producing a 200-member meteorological ensemble beginning in WY2022 and is 
summarized in fine detail in the PVA Appendix M.3. Updates for WY2023 on the model system 
are already mentioned in section 5.2.3.e. For brevity, the model configuration details are not 
repeated here. However, this section focuses on new analysis of the model performance of 
probabilistic precipitation during the December 2021-March 2022 winter season. The 
assessment also includes a comparison to the Deep Learning method applied to the 200-
member ensemble also discussed in section 5.2.3.e. Precipitation is evaluated against the 

Parameter-elevation Relationships on Independent Slopes Model (PRISM, 
https://prism.oregonstate.edu/) 4 km dataset, which serves as the observation dataset and 
daily climatology.    
 

To understand the probabilistic skill of IVT at landfall, the Global Ensemble Forecast System 
(GEFS) was examined using the “AR landfall tool” (Cordeira and Ralph 2021) introduced in 

section 5.2.3.d. This section discusses the qualitative forecast evaluation of the AR landfall tool 
for a series of events occurring during a period of successive AR activity during WY2023 
(referred to as the Deep Dive period). The ensemble probabilities are calculated for a given 
location and aligned with observed IVT to determine how well the ensemble probabilities 
reflected observed AR conditions as a function of forecast lead time. The ensemble tool 

https://prism.oregonstate.edu/
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explicitly reflects the number of ensemble members that are predicting IVT greater than a 
defined threshold.  
 

Forecast skill is assessed qualitatively by comparing the alignment of observed precipitation 
(IVT) with probabilities of precipitation (IVT) using specific thresholds. For more quantitative 
measures, the Continuous Ranked Probability Skill Score (CRPSS) and Brier Skill Score (BSS) are 
used to define skill for precipitation. CRPSS quantifies the overall difference between the 
forecasted probabilities and the actual distribution of events. Higher values of CRPSS are better, 
where a value of 0 means the forecasts are no better than climatology. BSS is the mean 
squared error relative to climatology, where a value of 1 is best and a value of 0 means the 
forecasts are no better than climatology.  

 
Performance of the 200-member ensemble   
Figure E-10 shows the probabilities of 24-hour accumulated precipitation > 1 inch (25.4 mm) 

for a representative test case (24 December 2021) from GEFS (Figure E-10A), West-WRF 200-
member ensemble (Figure E-10B), and West-WRF 200-member ensemble + Deep learning 
(Figure E-10C). The application of the deep learning technique is shown to improve the skill of 
the raw ensemble forecast. The larger probabilities generally align well with the observed 
precipitation of 1 inch or greater (black contours) across all models, but the West-WRF 200-
member ensemble and that with Deep Learning applied have greater probabilities than the 
GEFS over the Sierras -- implying more certainty that precipitation will exceed 1 inch or more in 
these areas.  
     

  
Figure E-10. Probability comparison among GEFS (a), ECMWF, West-WRF 200-mem ensemble, and 
West-WRF 200-mem ensemble + deep learning of 24-hr precipitation > 1 inch (25.4 mm) valid 24 Dec 
2021. The dark black line represents the observed 1-inch (25.4 mm) precipitation contour from PRISM.    

 

Furthermore, for the Yuba-Feather watershed, the deep learning post-processed West-WRF 
forecast (shown in purple; E-11 left) outperforms (i.e., CRPSS is larger) all other reference 
benchmark models, including the ECMWF (green) and the raw West-WRF (red), for the period 
of assessment (Dec 2021-Mar 2022), from a lead time of 1 to 3 days. The raw 200-member 
ensemble is competitive with the ECMWF and GEFS predictions, although it has an equivalent or 
larger CRPSS at all lead times compared to the GEFS. The CRPSS represents skill across the 
spectrum of all precipitation thresholds, the brier skill score is calculated for specific thresholds. 
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E-11 (right) shows that the deep learning-applied approach has a clearer improvement over the 
raw ensemble counterparts particularly for this upper threshold of 50 mm (1.96 inches) out 
through 4 days lead time. This suggests that the large West-WRF ensemble plus the post-
processing has desirable added value for predictions of precipitation in the West.  
  

  
Figure E-11. (Left) Continuous ranked probability skill score (CRPSS) and (right) brier skill score among 
GEFS (blue), ECMWF (green), West-WRF 200-mem ensemble (red), and West-WRF 200-mem ensemble 
+ deep learning of 24-hr precipitation (purple) using combined winter season forecasts during WY2022 
and WY2023. The CRPSS is calculated over the entire domain and reflects skill for all precipitation 
thresholds, and the brier score is calculated for a precipitation threshold of > 50 mm (1.96 in)  

Performance of the GEFS ensemble probability of IVT in Northern California  
 

Section 5.2.3.d introduces the “AR landfall tool” as a method for examining the probability of 
IVT exceeding defined thresholds at a certain location along the U.S. West Coast. Figure E-12 
shows the probability of IVT > 250 kg m-1 s-1 at a point along the coast near Bodega Bay 
(37.5N, 122.5W) for the sequence of ARs making landfall between 17 December 2022 and 16 
January 2023 (herein Deep Dive Period) and the actual IVT magnitude as observed from the 
GEFS analysis. Approximately 8 ARs made landfall in this region during the Deep Dive Period, as 
signified by the shaded red areas in the observed IVT time series, and the areas in purple 
represent where more than 90% of ensemble members were predicting IVT > 250 kg m-1 s-1. 

Using a percentage threshold of 50% (i.e. more than 50% of ensemble members) as one 
example of forecast skill, the GEFS ensemble predicted landfalling IVT> 250 kg m-1 s-1 anywhere 
between 6-13 days ahead of time. If that threshold is increased to 75% of the ensemble 
members, IVT > 250 kg m-1 s-1 was correctly predicted from 5-12 days ahead of time. There is 
clear variability in the lead time predictability from storm to storm across the deep dive period. 
This type of analysis is helpful in that it can guide further research into understanding 
meteorological patterns associated with specific storms that may point to explanations of lead 
time predictability (e.g. blocking patterns). Section 5.2.3.d also found over a longer period of 
record that GEFS was able to predict IVT 250 kg m-1 s-1 in Northern California up to 6 days, on 
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average, for moderate ARs on the AR scale (i.e. AR2). More detail is provided in Appendix 
B.2.4.  

  
Figure E-12. (a) A verification time – lead-time analysis of the ensemble odds of IVT magnitudes >=250 
kg m-1 s-1 (shaded) from the NCEP GEFS for forecasts verifying between 17 December 2022 through 17 
January 2023. (b) A time series of IVT magnitude from the GEFS control IVT magnitude (kg m -1 s-1) at the 
0-hour forecast time (e.g. analysis) with periods with IVT magnitudes >=250 kg m-1 s-1 shaded in red.  
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