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What is ARTMIP?

ARTMIP | Atmospheric River Tracking Method

Intercomparison Project

w ﬁ The goal of ARTMIP is to understand and quantify uncertainties in atmospheric river
i (AR) science based on choice of detection/tracking methodology.

http://www.cgd.ucar.edu/projects/artmip/
Tier 1

Participants run their algorithms on a common
dataset and adhere to a common format.

Data set: MERRA v2 Reanalysis
Time period for study: January 1980 - June 2017




What is ARTMIP?

The goal of ARTMIP is to understand and quantify uncertainties in atmospheric river (AR) science based on choice of
detection/tracking methodology.

http://www.cgd.ucar.edu/projects/artmip/
Tier 2

Simulated AR using 0.25°
AM5 with RCP8.5 forcing

Run algorithms for (any or all):

= Cross-reanalysis sensitivity studies

= Climate (modern and future) C20C+ (CAM5 High-res
courtesy of LBNL)

= CMIP5 data

Datasets for precipitation comparisons for Tier 1 and Tier 2 will be regional specific and include TRMM,

PERSIANN, GPCP, Livenh, or E-OBS.



Parameter
Type

—

Parameters
Choices

What is ARTMIP?

Diverse algorithmic choices

Computation
Type
|
Condition

If conditions are met,
then AR exists for each

time instance at each
grid point.

This counts time slices
at a specific grid point.

Tracking

Lagrangian approach: if
conditions are met, AR
object is defined and
followed across time
and space.

Geometry
Requirements

Length

Threshold
Requirements

Absolute

Value is explicitly
defined.

Relative

Value is computed
based on anomaly or
statistic.

Axis or
Orientation

No thresholds
(object only)

Temporal
Requirements

|
Time slice

Consecutive time slices can
be counted to compute AR
duration, but it is not
required to identify an AR.

Time stitching

Coherent AR object is
followed through time as a
part of the algorithm.

Regions
(Examples)

Global

North Pacific
Landfalling

North Atlantic
Landfalling

Southeast U.S.

South America




Science Goals

L How robust are AR metrics such as climatology, storm duration, and relationship to extreme precipitation?

O What are the uncertainties in AR science based on detection algorithm alone? Can these uncertainties be bound? What are the
implications of these uncertainties?

O How are AR metrics in future climate projections impacted by choice of algorithm?

O Can we provide guidance to the scientific community on what algorithms are most appropriate for specific science questions
and/or region of interest?

O What types of process level and impact studies can be informed by a diverse set of catalogues?
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Science Goals

L How robust are AR metrics such as climatology, storm duration, and relationship to extreme precipitation?

O What are the uncertainties in AR science based on detection algorithm alone? Can these uncertainties be bound? What are the
implications of these uncertainties?

O How are AR metrics in future climate projections impacted by choice of algorithm?

O Can we provide guidance to the scientific community on what algorithms are most appropriate for specific science questions
and/or region of interest?

O What types of process level and impact studies can be informed by a diverse set of catalogues?

Increase in storm CCSM4_hdeg
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Example Metrics

JFrequency
dintensity
AStorm Duration

JRelationship to Precipitation



Some Results...

February 2017 :High
number of ARs impacting
the U.S. West Coast

Colors = different AR
detection methods

Black lines = “Human”
controls, i.e. visual
inspection

Controls do NOT equal
truth (subjective), but
included in comparisons
as another “detection”
method.




Some Results... classification

# of methods for each type ~ 8/10/1 3/16 14/5 4/15 7/12 6/13 5/14

Abs/Rel Axis/No

Method Length/No Object/No Stich/Slice Track/Condition Width/No
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nowidth
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nowidth

Rutz
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nowidth
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Some Results... Absolute vs Relative

North Atlantic ARs
UK coastal 1980-2017 1980-2017

Ensemble Avg Plotted
Max/Min/Med */-/*

along coast
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Absolute methods in North Atlantic detect more ARs along the coast than relative methods.



Some Results... Absolute vs Relative

W:EST_IUS c?astall . , 198072017

Percent of time with AR along coast
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Northeast Pacific ARs

The reverse happens for the Northeast Pacific ARs. Relative methods
detect more ARs along the coast than absolute methods.

Potentially explained by climatology? Absolute methods may detect more
ARs closer to the mean storm track where the climatological IVT is higher,
(N. Atlantic). Relative methods may detect more ARs further from the
mean storm track where the climatological IVT is lower (N. Pacific).

MFHRﬁZ 1 1 1 CA.GO&SI?' | 1
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Some Results... Track vs Condition

Tracking (Lagrangian-styled object following) methods tend to detect less ARs compared to condition methods along
the coast for Iberian Peninsula and U.S. West Coast.

For UK ARs these relationship does not hold for summer and fall ARs.

Jet related? Subtropical versus eddy-driven?

1980-2017
UK coastal 1980-2017 : WEST_US coastal 1980-2017 s

Condition Ensemble Avg Plotted
BN Track Max/Min/Med */-/



Where are we now?

ARTMIP Timeline Q Jon Rutz is

leading Tier 1
Overview

both high resolution O Ashley Payne

Completed targets are in bold.

available for Climate
. o January 2018 Last Call Tier 1 Catalogues (to be included in Tier 1 results paper
participants/catalogues! Y gues ( paper) Change

E—)
Fall/Winter 2018 Tier 2 High Resolution Climate Catalogues due, Overview paper
Tier 2 CMIP5/6 Catalogues Begin
Tier 2 CMIP5/6 Catalogues due, Overview paper

Winter 2019/2020 Tier 2 Reanalysis Catalogues and Analysis




Take aways....

J Available Now: Tier 1 ARTMIP Catalogues and source dataset (MERRA-2).

d Experimental Design paper (includes February 2017 comparison results) is now published in GMD
(Shields et al, 2018).

 Tier 1 overview paper in progress, Jon Rutz leading. See next presentation for more results and
analysis!

[ Tier 2 in progress: Ashley Payne leading method comparison on high-resolution-climate-change-
model-data. Michael Wehner and Travis O’Brien are leading comparison using CMIP5 model data.

[ Other planned Tier 2 activities: Reanalysis comparison and CMIP6 model data.
 Other Tier 1 and Tier 2 analysis projects lead by various ARTMIP participants are beginning...

1 Interest in ARTMIP? Contact C. Shields or J. Rutz



