

Water Vapor Budget in Atmospheric Rivers: A Multi-model Evaluation

Bin Guan^{1,2}, Duane Waliser², and Marty Ralph³

¹Joint Institute for Regional Earth System Science and Engineering, UCLA ²NASA Jet Propulsion Laboratory, Caltech ³Scripps Institution of Oceanography, UC San Diego

With key input/feedback from Joel Norris (SIO) and Guang Zhang (SIO)

2018 International Atmospheric Rivers Conference, La Jolla, CA, 2018.06.28

Key Motivations

- Process-level understanding of ARs; specifically, reanalysis depiction of AR water budgets and uncertainties (and where observational efforts like AREX could help the most)
- AR water budget in global weather/climate models: systematic biases and model spread?
- How biases in water budget relate to biases in bulk AR characteristics (e.g., frequency, geometry, ...)

Global AR Detection Algorithm

Guan and Waliser 2015, Revision/refinement in Guan et al. 2018

Example AR Detection Output

> New capability/feature in revised algorithm

Multiple vs. Single IVT Threshold

- Use of multiple IVT thresholds, i.e., 85-95th percentiles, detects roughly 2-3 more AR days per year compared to the use of a single threshold of the 85th percentile
- "New" ARs are as precipitating as "old" ARs

Ralph et al. 2017 Airborne Observations

IWV (mm)

Ralph et al. 2017 Airborne Observations

Event 21: TIVT1=7.1 TIVT2=8.3

On average, each AR over NE Pacific has a flow rate of ~2.6 Amazon Rivers

Algorithm captures 21 dropsonde-observed ARs

Algorithm + Reanalysis

Shading: AR shapes.
Red: transect going through AR centroid.

Dropsonde

Blue: midpoint of AR transect.

All 21 dropsonde ARs have a matching reanalysis AR; 19 of them matched within ±3 hours.

Remarkable Agreement Between Two Totally Independent

AR Catalogs (Reanalysis vs. Dropsonde)

- Top: ERA-Interim-based AR width (-2% error) and total IVT (+3% error) validate well against dropsonde observations.
- Bottom: Dropsonde-observed AR width (5% difference) and total IVT (5% difference) well represent the entire population (21 vs. ~6000

Mapping AR Width and TIVT Globally Mean Width Mean Total IVT

- AR width and TIVT (left) have considerable seasonal and geographical variations
- The largest values tend to occur in the subtropics and during cold seasons
- Complimenting AR IVT (above), TIVT (left) gives insight to individual ARs

Over ~90% Agreement in Detected AR Landfall Dates Compared to 3 Independent Studies

Study Area	Western North America	Britain (Lavers et al. 2011)	East Antarctica (Gorodetskaya et
	(Neiman et al. 2008)		al. 2014)
Period	1997–2014,	1997–2010, October–March	2009–2012, All Months
	November-March	(High-impact events only)	(High-impact events only)
Variable for AR Detection	IWV from SSM/I and	900-hPa Specific Humidity	IWV from ERA-Interim
	SSMIS Retrievals	from Twentieth Century	Reanalysis
		Reanalysis Project	
Percent Agreement	94%	89%	100%

AR detection result can be sensitive to detection methods: IVT (intensity) threshold among the key factors

Analysis under the auspices of the ARTMIP Project

20-year Simulations from Global Weather/Climate Models

GASS-YoTC Multi-model Experiment

Grid cell size

Atmos.-only

5	Model Name Native Resolution (Lon ×		Remark		
		Lat, # of Vertical Levels)			
	BCC-AGCM2.1	T42 (2.8°), L26			
	ISUGCM	T42 (2.8°), L18			
ŏ	SPCAM3	T42 (2.8°), L30	Super-parameterized, Daily Archive		
	UCSD-CAM3	T42 (2.8°), L26			
	GISS-E2	2.5° × 2.0°, L40			
	TAMU-CAM4	2.5° × 1.9°, L26			
•	FGOALS-s2	R42 (2.8° × 1.6°), L26			
•	ACCESS1	1.875° × 1.25°, L85			
•	MetUM-GA3	1.875° × 1.25°, L85			
•	MIROC5	T85 (1.5°), L40			
•	CNRM-AM	T127 (1.4°), L31			
•	EC-GEM	1.4°, L64			
•	MRI-AGCM3	T159 (1.125°), L48			
•	CAM5	1.25° × 0.9°, L30			
	CAM5-ZM	1.25° × 0.9°, L30			
•	CFS2	T126 (1°), L64			
•	CWB-GFS	T119 (1°), L40			
	ECEarth3	T255 (0.7°), L91			
	GEOS5	0.625° × 0.5°, L72			
•	NavGEM1	T359 (0.42°), L42			
	CanCM4	2.8°, L35	Coupled		
•	SPCCSM3	T42 (2.8°), L30	Coupled, Super-parameterized, Daily Archive		
•	ECHAM5-SIT	T63 (2°), L31	Coupled		
	ECHAM6	T63 (2°), L47	Coupled		

Atmospheric Water Vapor Budget

IWV Tendency = IVT Convergence + Evap - Precip

Adapted from Eqn. 15 of Seager & Henderson (2013)

- Based on ~6000 ARs detected over northeastern Pacific during 1991-2010 NDJFM
- Overall, good agreement between ERA-Interim and MERRA-2
- Each sector of the four is unique relative to the others, with water budget dominated by different terms

Water Budget: Models Dominant Balance

Water Budget: Model Spread

- Model spread (box-whiskers) is notable compared to observational uncertainty (diff. between two circles)
- Largest model spread occurs in post-frontal and frontal sectors in their respective dominant budget terms
- Largest observational uncertainty is associated with IVT convergence due to mass convergence in frontal sector

Largest Model Spread

Largest Obs. Uncertainty

How does water budget bias relate to model fidelity in bulk AR characteristic?

- Example (left): Too much precipitation in AR frontal sector (i.e., bias in water budget) is related to too narrow ARs (i.e., bias in bulk AR characteristics)
- Examination of 4 terms @ 4 sectors and 7 bulk AR characteristics (right) indicates simulated bulk AR characteristics overall have larger sensitivity to biases in IVT convergence and IWV tendency compared to E/P (counting # of circles, i.e., significant correlations)

How can a small sample of observed ARs (e.g., from AREX) potentially help constrain climate models?

Even a small sample of observed ARs (here, 30) can potentially falsify a fraction of the global models (comparing model spread in box-whiskers to observational uncertainty in triangles)

Method

- A small sample of k ARs (with k mimicking # of anticipated observations) is drawn randomly from a total of ~6000 reanalysis ARs, and the median value of each budget term is obtained;
- The above is repeated 10,000 times, with 10,000 sets of median values obtained;
- The 5th, 50th, and 95th percentiles of the median values are plotted (the centers of the upward triangle, circle, and downward triangle, respectively) to represent observational uncertainty associated with a small sample;
- Model spread across 24 models based on ~6000 ARs (boxplots) is evaluated relative to above observational

How can a small sample of observed ARs (e.g., from AREX) potentially help constrain climate models?

30 ARs @ 90% Conf. Lev.	Post-Fr	Fr	Pre-Fr	Pre-AR	Total
IWV Tendency	0	0	0	0	0
IVT Conv.: Moisture Adv.	0	0	0	0	0
IVT Conv.: Mass Conv.	0	3	0	0	3
IVT Conv.: Surface	0	4	0	0	4
Evaporation	9	10	5	2	15
Precipitation	7	5	4	3	15
Total	14	15	7	4	21

- Main sector of table: considering only the given sector and given parameter, # of models that fall outside of observational uncertainty associated with a random sample of k ARs
- **Rightmost column**: # of models that fail in at least one sector for the given parameter
- Bottom row: # of models that fail for at least one parameter in the given sector
- Red: # of models that fail for at least one parameter in at least one sector

Number of models (out of 24) a random observation of k ARs (i.e., kx4 sectors) can eliminate

k	20	30
@ 95% Conf. Lev.	9	16
@ 90% Conf. Lev.	16	21

Summary

- The Guan and Waliser (2015) global AR detection algorithm has been further developed and evaluated;
- Six water vapor budget terms at four AR sectors are compared between two reanalyses and 24 global weather/climate models;
- Each of the four AR sectors is uniquely dominated by different budget terms: largely agreed between ERA-Interim and MERRA-2;
- Model spread is notable relative to reanalysis uncertainty, the largest model spread being associated with the dominant budget terms in post-frontal and frontal sectors;
- Reanalysis uncertainty and model biases in key AR water vapor budget terms highlight the need for better constraining these terms, such as via dedicated field observations.

Global AR databases and codes available at

ucla.box.com/ARcatalog