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• Process-level understanding of ARs; specifically, 
reanalysis depiction of AR water budgets and 
uncertainties (and where observational efforts like 
AREX could help the most)

• AR water budget in global weather/climate 
models: systematic biases and model spread?

• How biases in water budget relate to biases in bulk 
AR characteristics (e.g., frequency, geometry, …)

Key Motivations



Global AR Detection Algorithm
Guan and Waliser 2015, Revision/refinement in Guan et al. 2018

IVT=Integrated Water Vapor Transport
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Example AR Detection Output

“New” AR
(i.e., undetected if using 

85th percentile IVT)

Enhanced output

New capability/feature in revised algorithm



Multiple vs. Single IVT Threshold

• Use of multiple IVT thresholds, i.e., 85-95th percentiles, detects 
roughly 2-3 more AR days per year compared to the use of a 
single threshold of the 85th percentile

• “New” ARs are as precipitating as “old” ARs



Ralph et al. 2017
Airborne Observations



On average, each AR over NE Pacific 
has a flow rate of ~2.6 Amazon Rivers

Ralph et al. 2017
Airborne Observations



“New” ARs

Algorithm captures 
21 

dropsonde-observed 
ARs

Algorithm + Reanalysis
●Shading: AR shapes.
●Red: transect going through 
AR centroid.

Dropsonde
Blue: midpoint of AR 
transect.

All 21 dropsonde ARs have 
a matching reanalysis AR; 
19 of them matched within 
±3 hours.



Remarkable Agreement Between Two Totally Independent 
AR Catalogs (Reanalysis vs. Dropsonde)

• Top: ERA-Interim-based AR width (-2% error) and total IVT (+3% error) 
validate well against dropsonde observations.

• Bottom: Dropsonde-observed AR width (5% difference) and total IVT 
(5% difference) well represent the entire population (21 vs. ~6000 
ARs).



Mapping AR Width and TIVT Globally

• AR width and TIVT (left) 
have considerable seasonal 
and geographical variations

• The largest values tend to 
occur in the subtropics and 
during cold seasons

• Complimenting AR IVT 
(above), TIVT (left) gives 
insight to individual ARs

AR Frequency and IVT



Over ~90% Agreement in Detected AR Landfall Dates 
Compared to 3 Independent Studies

(High-impact events only) (High-impact events only)



AR detection result can be sensitive to detection methods: 
IVT (intensity) threshold among the key factors

Analysis under the auspices of the ARTMIP Project



20-year Simulations 
from Global 
Weather/Climate 
Models

GASS-YoTC 
Multi-model 
Experiment

Atmos.-only
Coupled

Grid cell size



Atmospheric Water Vapor Budget

 

 

Adapted from Eqn. 15 of Seager & Henderson (2013)

IVT Convergence due to
1. Moisture Advection
2. Mass Convergence
3. Surface process
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Water Budget: Reanalyses

• Based on ~6000 ARs detected over 
northeastern Pacific during 1991-2010 
NDJFM

• Overall, good agreement between 
ERA-Interim and MERRA-2

• Each sector of the four is unique 
relative to the others, with water 
budget dominated by different terms

Four Sectors

Dominant Balance



Water Budget: Models Dominant Balance



Water Budget: 
Model Spread

Largest Model Spread

Largest Obs. Uncertainty

• Model spread 
(box-whiskers) is 
notable compared to 
observational 
uncertainty (diff. 
between two circles)

• Largest model spread 
occurs in post-frontal 
and frontal sectors in 
their respective 
dominant budget terms

• Largest observational 
uncertainty is 
associated with IVT 
convergence due to 
mass convergence in 
frontal sector



How does water budget bias relate to 
model fidelity in bulk AR characteristic?

• Example (left): Too much precipitation in AR frontal sector (i.e., 
bias in water budget) is related to too narrow ARs (i.e., bias in bulk 
AR characteristics)

• Examination of 4 terms @ 4 sectors and 7 bulk AR characteristics 
(right) indicates simulated bulk AR characteristics overall have 
larger sensitivity to biases in IVT convergence and IWV tendency 
compared to E/P (counting # of circles, i.e., significant correlations)



How can a small sample of observed ARs (e.g., from 
AREX) potentially help constrain climate models?

Even a small sample of 
observed ARs (here, 30) 
can potentially falsify a 
fraction of the global 
models (comparing 
model spread in 
box-whiskers to 
observational 
uncertainty in triangles)

Method
• A small sample of k ARs (with k mimicking # of anticipated observations) is drawn randomly from a total of ~6000 

reanalysis ARs, and the median value of each budget term is obtained;
• The above is repeated 10,000 times, with 10,000 sets of median values obtained;
• The 5th, 50th, and 95th percentiles of the median values are plotted (the centers of the upward triangle, circle, and 

downward triangle, respectively) to represent observational uncertainty associated with a small sample;
• Model spread across 24 models based on ~6000 ARs (boxplots) is evaluated relative to above observational 

uncertainty.



How can a small sample of observed ARs (e.g., from 
AREX) potentially help constrain climate models?

30 ARs @ 90% Conf. Lev. Post-Fr Fr Pre-Fr Pre-AR Total
IWV Tendency 0 0 0 0 0
IVT Conv.: Moisture Adv. 0 0 0 0 0
IVT Conv.: Mass Conv. 0 3 0 0 3
IVT Conv.: Surface 0 4 0 0 4
Evaporation 9 10 5 2 15
Precipitation 7 5 4 3 15
Total 14 15 7 4 21

• Main sector of table: considering only the given sector and given parameter, 
# of models that fall outside of observational uncertainty associated with a 
random sample of k ARs

• Rightmost column: # of models that fail in at least one sector for the given 
parameter

• Bottom row: # of models that fail for at least one parameter in the given sector
• Red: # of models that fail for at least one parameter in at least one sector



Number of models (out of 24) a random observation 
of k ARs (i.e., kx4 sectors) can eliminate

k 20 30
@ 95% 

Conf. Lev. 9 16

@ 90% 
Conf. Lev. 16 21



Summary
➢ The Guan and Waliser (2015) global AR detection algorithm 

has been further developed and evaluated;
➢ Six water vapor budget terms at four AR sectors are 

compared between two reanalyses and 24 global 
weather/climate models;

➢ Each of the four AR sectors is uniquely dominated by different 
budget terms: largely agreed between ERA-Interim and 
MERRA-2;

➢ Model spread is notable relative to reanalysis uncertainty, the 
largest model spread being associated with the dominant 
budget terms in post-frontal and frontal sectors;

➢ Reanalysis uncertainty and model biases in key AR water 
vapor budget terms highlight the need for better constraining 
these terms, such as via dedicated field observations.

Bin.Guan@jpl.nasa.gov



Global AR databases and 
codes available at

ucla.box.com/ARcatalog

https://ucla.box.com/ARcatalog

