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Many studies about hydrological impacts of ARs in terms of precip.
Here the focus is on impacts in terms of sea-ice melt

» The Arctic is warming at a rate that is more than twice that of the global average -
referred to as Arctic Amplification

« Associated with Arctic Amplification is a sharp decrease in Arctic sea-ice extent over
the observational period (from 1979).

« Superposed on the negative trend is quite a significant interannual variability
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Many studies about hydrological impacts of ARs in terms of precip.
Here the focus is on impacts in terms of sea-ice melt

» The Arctic is warming at a rate that is more than twice that of the global average -
referred to as Arctic Amplification.

« Associated with Arctic Amplification is a sharp decrease in Arctic sea-ice extent over
the observational period (from 1979).

« Superposed on the negative trend is quite a significant interannual variability
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Hypothesis: Springtime moisture transport into the Arctic preconditions

the sea-ice pack for the following September minimum extent
e.g., Kapsch et al (2013), Park et al (2015) (winter)

« Examined in terms of extreme events (Yang and Magnusdottir 2017, 2018)

Data

« Sea-ice concentration (SIC): daily satellite data starting in 1979 from NSIDC
Meteorological fields: ERA-Interim reanalysis

Methods
daily vertically integrated meridional moisture transport across 70N — pick out the top
15% of days: extreme days

Define ‘extreme events’ as at least 3 consecutive extreme days, preceded and
followed by non-extreme days



Sea-ice concentration (SIC) area average over ocean areas north of 70N (monthly, annual)

arge seasonal cycle . it
. o » U”‘“”H”.",“ ’I“y‘“““’l “’I'llll‘l’l

1981 1985 1989 1993 1997 2001 2005 2009 2012



Sea-ice concentration (SIC) area average over ocean areas north of 70N
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Sea-ice concentration (SIC) area average over ocean areas north of 70N
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Sea-ice concentration (SIC) area average over ocean areas north of 70N
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Seasonal variability in daily vertically integrated, meridional moisture transport into Arctic
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Seasonal variability in daily vertically integrated, meridional moisture transport into Arctic

Composite low vs high SIC years
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« daily vertically integrated meridional moisture transport across 70N — pick out the top
15% of days: extreme days

Zonal average Average over -30W to 30E

Composites (a) VIiqv70N Extremes (b) Atlantic VIqv70N Extremes
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Dominated by the Atlantic sector

From now on focus on Atlantic VIiqv70N

Zonal average Average over -30W to 30E

Com posites (a) VIiqv70N Extremes (b) Atlantic VIqv70N Extremes

for MAM




Moisture transport into the Arctic is dominated by the flux in North Atlantic
sector

Other studies have found that the moisture flux into the Arctic is dominated by the N Atlantic
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extreme moisture flux. MAM composite of SIC at lags -1, 0, 1, 2, 3, 4 days
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extreme moisture flux. MAM composite of Tyf. at lags -1, 0, 1, 2, 7, 14 days




extreme moisture flux. MAM composite of Z500 at lags -1, 0, 1, 2, 4, 6 days
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The four dominant daily weather regimes in the N Atlantic

sector
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Relative frequency of N Atl. Daily weather regimes for MAM, 1979-2014, all days
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PDF of moisture flux for each weather regime
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Figure 10. Probability density function (PDF) of Atlantic-Viqv70N for each of the four North Atlantic weather regimes.
The vertical dashed line shows the 85th percentile of all the MAM Atlantic-Viqv70N daily values.



From Michel et al (2012)

Example of building Scandinavian Block
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Lag composites of
MAM 200 hPa
velocity potential
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Conclusions

Almost all the extreme moisture transport in daily data takes place through the
N Atlantic sector. Focus on Atlantic MAM extreme moisture flux events

Lag composite analysis shows that these extreme events are accompanied by
a substantial SIC reduction lasting around a week. T;¢. anomalously high over

the sea-ice loss area and low west of Greenland and over interior Eurasia.

The Scandinavian Block weather regime is mainly responsible for the extreme
moisture transport (65% of days), NAO+ (30%)

The extreme moisture events appear to be preceded by eastward propagating
large-scale tropical convective forcing by as long as 2 weeks but the signal is
weak

In summer there is net export of moisture out of the Arctic under a very strong
anticyclonic circulation. The ice-albedo mechanism of sea-ice loss dominates
in thermodynamic effects summer, downward longwave surface flux dominates
in spring.



Hypothesis: Springtime moisture transport into the Arctic preconditions

the sea-ice pack for the following September minimum extent
e.g., Kapsch et al (2013)

« daily vertically integrated meridional moisture transport across 70N — pick out the top
15% of days: extreme days

Zonal average Average over -30W to 30E
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for MAM

.....
----
,,,,
.....
e
'

’ Py
. L™

’ $is

100 kg m~1 s=1



Hypothesis: Springtime moisture transport into the Arctic preconditions

the sea-ice pack for the following September minimum extent
e.g., Kapsch et al (2013)

daily vertically integrated meridional moisture transport across 70N — pick out the top
15% of days: extreme days

Define ‘extreme events’ as at least 3 consecutive extreme days, preceded and
followed by non-extreme days
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extreme moisture flux. MAM composite of sfc downward LW flux at lags -1, 0, 1, 2,4, 6
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Many studies about hydrological impacts of ARs in terms of precip.
Here the focus is on impacts in terms of sea-ice melt
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40 ensemble members in CESM-LE From 30 CMIP5 simulations from different models
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SLP and integrated moisture flux associated with negative anomalies of
high-pass filtered Sept sea-ice anomalies
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SLP and integrated moisture flux associated with negative anomalies of
high-pass filtered Sept sea-ice anomalies
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Relative frequency of N Atl. Daily weather regimes for MAM, 1979-2014, all days
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Conclusions

MAM, extreme, daily moisture transport into the Arctic preconditions the sea-
ice for the melt season, leading to minimum sea-ice extent in the following
September.

Almost all the extreme moisture transport in daily data takes place through the
N Atlantic sector

Lag composite analysis shows that these extreme events are accompanied by
a substantial SIC reduction lasting around a week. T, anomalously high over
the sea-ice loss area and low west of Greenland and over interior Eurasia.

The blocking weather regime is mainly responsible for the extreme moisture
transport (65% of days), NAO+ (30%)

The extreme moisture events appear to be preceded by eastward propagating
large-scale tropical convective forcing by as long as 2 weeks but the signal is
weak

In summer there is net export of moisture out of the Arctic under a very strong
anticyclonic circulation. The ice-albedo mechanism of sea-ice loss dominates
in summer.



(a) AWB example (b) CWB example
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Agure 5. Mixing ratio of water vapor (shading), potential temperature (colored contours), and horizontal wind (amows)
on 700 hPa for (a) an anticyclonic wave breaking on 8 January 2006 and (b) a cyclonic wave breaking on 22 January 2007.
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FIG. 5. The composite of zonal wind and aE,/dy on the 350-K isentropic surface when cyclonic RWB takes place
within (a) the NE domain and (b) the SW domain. Contours are zonal wind (m s™; contour interval of 10 m s™'), and
shading is 4E,/ay (107 m s™%). To emphasize higher latitudes, dE,/ay is only plotted north of 50°N.




(a) VIgv70N Extremes (b) Atlantic VIQu70N Extremes

Figure 3. Composites of MAM vertically integrated moisture transport (Viqv) for extremes of (a) Viqu70N and
(b) Atlantic-Vigv70N. The blue solid lines show the defined Atlantic longitude range 30°W-30°E at 70°N.
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Figure 10. Probability density function (PDF) of Atlantic-Viqv70N for each of the four North Atlantic weather regimes.
The vertical dashed line shows the 85th percentile of all the MAM Atlantic-Vigv70N daily values.



Seasonal variability in daily vertically integrated, meridional moisture flux into Arctic

Composite low vs high SIC years
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