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The Upper Colorado River Basin (UCRB) at a glance:

Four CO Rockies sub-basins provide ~50% of the annual runoff
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The Upper Colorado River Basin (UCRB) at a glance:
Snow-dominated nature (VIC-estimated snow water equivalent)
Peak Annual SWE (mm), 1980-2013 Date of Peak Annual §WE (mm), 1980-2013
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The U pper U.S. Drought Monitor October 30, 2018

(Released Thursday, Nov. 1, 2018)

Colorado River West \elid s . £DT
Basin (UCRB) at
a glance:
Current
situation

Intensity:
DO Abnormally Dry

D1 Moderate Drought

D2 Severe Drought
- D3 Extreme Drought
- D4 Exceptional Drought

The Drought Monitor focuses on broad-scale
conditions. Local condifions may vary. See
accompanying text summary for forecast
statements.
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Temperature reduces runoftf efficiency, but
first need something to runoft...

Goals of on-going study supported by DWR:

1. Summarize existing literature on UCRB precipitation, add to it, and identify additional
needs with regards to S2S predictability

2. Evaluate importance of extreme/other snowfall events in interannual variability

3. Assess proximal mechanisms leading to extreme/other snowpack accumulation
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Station-based Approach
with SNOTEL

Blue Line = Upper Colorado River
Basin

White Dots = SNOTEL outside UCRB

Black/Red Dots = SNOTEL inside (or
on) UCRB

n =123 Stations

Subset only stations with > 20 years
of data

Period WY1981-2014 (will be
updating through WY2018)



Question One:
Do extreme snow accumulation events matter?

* In CA, previous work by Dettinger (2016 SFEWS) shows that extreme
events contribute appreciably to the mean, but even more so to the
variance

e Lute and Abatzoglou (2014 WRR) showed this for all SNOTEL, repeating their
results to check

« We'll take slightly less extreme definition (top 10t" instead of top 5t")
* Look at only daily +SWE events from Oct 1 — May 31

* Also will look at multiday gains

* Following Dettinger, we calculate r via Spearman Rank Correlation for
both top 10 and bottom 90.



Schofield Pass, CO




Schofield Pass, CO (3261 m): WY2008 (snowy)
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Oct-May Total SWE Contribution (mm)

Water-Year Precipitation, Delta Catchment
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All Other
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Key Point: Contributions of
extreme snowfall days to mean
are typically between 30-40%

Remark 1: (Sum SWE,,;0)/(Sum +SWE)

Remark 2: Note the higher values in the San

Juans/Southern Utah (red oval)

Could this be related to
the southern interior
AR penetration
pathway shown in

Rutz et al. 2015 MWR
and Hatchett et al.
2017 J Hydromet?
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Fraction of Daily SWE gains in top 10 Days Variance explained in cumulative SWE gains by top 10 Days
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Precipitation
tells slightly
different story

for CO Rockies...

due to station
location bias?

Fraction of Cumulative Oct-May Precipitation in top 10 Days
1981-2013, Data Source: VIC Livneh et al. (2015)
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Variance explained in cumulative Oct-May Precipitation by top 10 Days
1981-2013, Data Source: VIC Livneh et al. (2015)







Vapor Transport Differences of Extreme Snow Accumulation Events
(n = 349):
Widespread (40+ stations) Versus All Extreme
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Vapor Transport and 500 hPa Geopotential Height Differences of
Extreme Snow Accumulation Events:
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250 hPa Winds and 500 hPa Geopotential Height Differences of
Extreme Snow Accumulation Events:
Widespread (40+ stations) Versus All Extreme
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Consistent with results from
self-organizing map analysis

of IVT anomalies

Map Types 17, 19 (red boxes)
produces inland precipitation

anomalies in southern
Utah/western CO

“Southern Corridor”

Map Types 11, 15 (blue boxes)
produces inland precipitation
anomalies in northern A EEE

WY/UT/northwestern CO
“Northern Sierra Pathway”
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*Note: we will be extending the SOMs domain inland to 90W



Key Points on widespread
accumulation events

1. Southern inland penetrating moisture transport corridor
(aka ‘Mojave Sneak’) active, northern Sierra pathway
active in less widespread extreme events

2. Deeper trough offshore of Oregon

3. Enhanced SW’erly upper level jet (stronger upper level
divergence + forcing + transport)

4. Closed/cutoff lows occurred about 10% of cases

Next steps:

Evaluate non-extreme events (explain much less variance,
but ~65% of mean)

Assess via AR catalogs/scale, vertical characteristics

Explore with Zhenhai which mechanisms lead to poor
NMME results?




Similar results just published

International Journal of Climatology / Volume 0, Issue 0

RESEARCH ARTICLE

Moisture transport associated with large precipitation events in the Upper
Colorado River Basin

Johnathan P. Kirk &, Thomas W. Schmidlin

First published: 05 September 2018
https://doi.org/10.1002/joc.5734

headwaters. Trajectory analyses are also calculated to further characterize LPE-inducing
atmospheric river pathways by subbasin in the UCRB. Results indicate that LPEs throughout
the basin most commonly coincide with amplified trough patterns, which advect Pacific
moisture into the UCRB from the southwest, through Southern California and the Four
Corners region; patterns that are positively correlated to streamflow. LPEs occurring in



Discussion Topics:

A larger proposal... ‘ _ ‘

Southerly moisture pathway:
Repeat the Mundhenk et al. (2018) analysis of change in AR frequency, but focused on

CA bight/northern Baja?

Flow orientation/transport: Assess role of upstream/offshore Rossby wave breaking
" and subsequent downstream dynamical impacts?

At longer (i.e., subseasonal) leads, address which precipitation mechanisms models
are missing that result in lower skill (a big event or several smaller events?)




