Mechanisms Responsible for Building Snowpack in the
Upper Colorado River Basin
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The Upper Colorado River Basin (UCRB) at a glance:
Four CO Rockies sbhsins provide ~50% of the annual runoff

15.0

13.5
12.0
10.5

Cheyenne

19.0

%

§7.5

16.0

+. Colorado Springs

4.5
3.0

Pueblo

1.9

0.0
Xiao et al. (2018 WR

Flagstaff




The Upper Colorado River Basin (UCRB) at a glance:
Snowdominated nature (VHKEstimated snow water equivalent)

Peak Annual SWE (mm), 1980-2013 Date of Peak Annual SWE (mm), 1980-2013
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The Upper U.S. Drought Monitor October 30, 2018

(Released Thursday, Nov. 1, 2018)

Colorado Rivel West a5 2 £OT
Basin (UCRB)
a glance:
Current
situation

Intensity:
DO Abnormally Dry

D1 Moderate Drought

D2 Severe Drought
- D3 Extreme Drought
- D4 Exceptional Drought

The Drought Monitor focuses on broad-scale
conditions. Local condifions may vary. See
accompanying text summary for forecast
statements.
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Temperature reduces runoft efficiency, but
FTANRU YySSR az2YSuKAYH
Goals of orgoing study supported by DWR:

1. Summarize existing literature on UCRB precipitation, add to it, and identify additional
needs with regards to S2S predictability

2. Evaluate importance of extreme/other snowfall events in interannual variability

3. Assess proximal mechanisms leading to extreme/other snowpack accumulation
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Upper Colorado River Basin SNOTEL (n = 123)

5 S Station-based Approach
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Question One:
Do extreme snow accumulation events matter?

Aln CA, previous work yettinger(2016 SFEWS) shows that extreme
events contribute appreciably to the mean, but even more so to the
variance

ALute andAbatzoglou2014 WRR) showed this for all SNOTEL, repeating their
results to check

A2SQft G118 afA3aKGEe %isstead offol H)NB Y.
ALook at only daily +SWE events from OgtMay 31
A Also will look at multiday gains

AFollowingDettinger we calculate r via Spearman Rank Correlation for
both top 10 and bottom 90.






Example for
Schofield Pass:
A snowy year
(top) versus a
not-so-snowy
year(bottom)

Schofield Pass, CO (3261 m): WY2008 (snowy)
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Schofield Pass, CO (3261 m): WY2012 (not snowy)
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Oct-May Total SWE Contribution (mm)

Water-Year Precipitation, Delta Catchment
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Key PointContributions of
extreme snowfall days to mean
are typically between 300%

Remark 1: (Sum SWYEy/(Sum +SWE)

Remark 2: Note the higher va

ues in the San

JuansSouthern Utah (red oval
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Fraction of Daily SWE gains in top 10 Days Variance explained in cumulative SWE gains by top 10 Days
1981-2013, Data Source: VIC Livneh et al. (2015) 1981-2013, Data Source: VIC Livneh et al. (2015)
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Precipitation
tells slightly
different story
T2NJ / h

due to station
location bias?

Fraction of Cumulative Oct-May Precipitation in top 10 Days
1981-2013, Data Source: VIC Livneh et al. (2015)
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Variance explained in cumulative Oct-May Precipitation by top 10 Days
1981-2013, Data Source: VIC Livneh et al. (2015)







Vapor Transport Differences of Extreme Snow Accumulation Even
(n = 349):
Widespread (40+ stations) Versus All Extreme



