Atmospheric River Recon

Related Info

AR Recon Related Information

| News | Meetings | Background Publications | Results Publications |

Cannon, F., J.M. Cordeira, C.W. Hecht, J.R. Norris, A. Michaelis, R. Demirdjian, and F.M. Ralph, 2020: GPM Satellite Radar Observations of Precipitation Mechanisms in Atmospheric Rivers. Mon. Wea. Rev, 148, 1449-1463,

Cannon, F., Oakley, N. S., Hecht, C. W., Michaelis, A., Cordeira, J. M., Kawzenuk, B., Demirdjian, R., Weihs, R., Fish, M. A., Wilson, A. M. and Ralph, F. M., 2020. Observations and predictability of a high-impact narrow cold-frontal rainband over southern California on 2 February 2019. Wea. Forecasting, 35, 2083-2097,

Cobb, A., L. Delle Monache, F. Cannon, and F.M. Ralph, 2021: Representation of dropsonde-observed atmospheric river conditions in reanalyses. Geophys. Res. Lett., 48, e2021GL093357.

Cobb, A., A. Michaelis, S. Iacobellis, F.M. Ralph, and L. Delle Monache, 2021: Atmospheric river sectors: Definition and characteristics observed using dropsondes from 2014-2020 CalWater and AR Recon. Mon. Wea. Rev, 149, 623-644,

Corringham, T. W., Ralph, F. M., Gershunov, A., Cayan, D. R., and Talbot, C. A., 2019. Atmospheric rivers drive flood damages in the western United States. Science Advances, 5, eaax4631DOI:10.1126/sciadv.aax4631.

Demirdjian, R., Doyle, J.D., Reynolds, C.A. Norris, J.A., Michaelis, A.C., Ralph, F.M., 2020: A Case Study of the Physical Processes Associated with the Atmospheric River Initial Condition Sensitivity from an Adjoint Model. Journal of the Atmospheric Sciences, 77, 691-709, DOI 10.1175/JAS-D-19-0155.1

Demirdjian, R., J.R. Norris, A. Martin, and F.M. Ralph, 2020: Dropsonde Observations of the Ageostrophy within the Pre-Cold-Frontal Low-Level Jet Associated with Atmospheric Rivers. Mon. Wea. Rev., 148, 1389-1406,

Guan, B., D. Waliser, and F. Ralph, 2017: An inter-comparison between reanalysis and dropsonde observations of the total water vapor transport in individual atmospheric rivers. Journal of Hydrometeorology, 19, 321-337, doi:10.1175/JHM-D-17-0114.1

Hatchett, B.J., Q. Cao, P.B. Dawson, C.J. Ellis, C.W. Hecht, B. Kawzenuk, J.T. Lancaster, T. Osborne, A.M. Wilson, M.L. Anderson, M.D. Dettinger, J. Kalansky, M.L. Kaplan, D.P. Lettenmaier, N.S. Oakley, F.M. Ralph, D.W. Reynolds, A.B. White, M. Sierks, E. Sumargo,. (2020). Observations of an extreme atmospheric river storm with a diverse sensor network. Earth and Space Science, 2333-5084, e2020EA001129. doi:10.1029/2020EA001129

Lavers, D.A., N.B. Ingleby, A.C. Subramanian, D.S. Richardson, F.M. Ralph, J.D. Doyle, C.A. Reynolds, R.D. Torn, M.J. Rodwell, V. Tallapragada, and F. Pappenberger, 2020: Forecast Errors and Uncertainties in Atmospheric Rivers. Wea. Forecasting, 35, 1447-1458,

Lavers, D.A., M.J. Rodwell, D.S. Richardson, F.M. Ralph, J.D. Doyle, C.A. Reynolds, V. Tallapragada, and F. Pappenberger, 2018: The Gauging and Modeling of Rivers in the Sky. Geophysical Research Letters, 45,

Lord, S., Wu, X. and Tallapragada, V. and Ralph, F. M., 2022a. The Impact of Dropsonde Data on the Performance of the NCEP Global Forecast System During the 2020 Atmospheric Rivers Observing Campaign. Part 1: Precipitation. Wea. Forecasting,

Michaelis, A. C., Martin, A. C., Fish, M. A., Hecht, C. W., & Ralph, F. M., 2021: Modulation of Atmospheric Rivers by Mesoscale Frontal Waves and Latent Heating: Comparison of Two U.S. West Coast Events. Mon. Wea. Rev, (published online ahead of print),

Norris, J.R., F.M. Ralph, R. Demirdjian, F. Cannon, B. Blomquist, C.W. Fairall, J.R. Spackman, S. Tanelli, and D.E. Waliser, 2020: The Observed Water Vapor Budget in an Atmospheric River over the Northeast Pacific. J. Hydrometeor.,

Ralph, F., S. Iacobellis, P. Neiman, J. Cordeira, J. Spackman, D. Waliser, G. Wick, A. White, and C. Fairall, 2017: Dropsonde Observations of Total Integrated Water Vapor Transport within North Pacific Atmospheric Rivers. Journal of Hydrometeorology, 18, 2577-2596. doi:10.1175/BAMS-D-15-00245.1

Reynolds, C.A., J.D. Doyle, F.M. Ralph, and R. Demirdjian, 2019: Adjoint Sensitivity of North Pacific Atmospheric River Forecasts. Mon. Wea. Rev., 147, 1871-1897,

Stone, R.E., C.A. Reynolds, J.D. Doyle, R. Langland, N. Baker, D.A. Lavers, and F.M. Ralph, 2019: Atmospheric River Reconnaissance Observation Impact in the Navy Global Forecast System. Mon. Wea. Rev., 0,

Sun, W., Liu, Z., Davis, C. A., Ralph, F. M., Delle Monache, L., Zheng, M., 2022. Impacts of dropsonde and satellite observations on the forecasts of two atmospheric-river-related heavy rainfall events. Atmos. Res. 278, 106327.

Zhang, Z. and Ralph, F. M., 2021. The influence of antecedent atmospheric river conditions on extratropical cyclogenesis. Mon. Wea. Rev., 149, 1337-1357

Zheng, M., Delle Monache, L., Cornuelle, B. D., Ralph, F. M., Tallapragada, V. S., Subramanian, A., Haase, J. S., Zhang, Z., Wu, X., Murphy, M. J., Higgins, T. B., and DeHaan, L., 2021. Improved forecast skill through assimilating dropsonde observations from Atmospheric River Reconnaissance. J. Geophys. Res. Atmos., 126, e2021JD034967.

Zheng, M., L. Delle Monache, X. Wu, F.M. Ralph, B. Cornuelle, V. Tallapragada, J.S. Haase, A.M. Wilson, M. Mazloff, A. Subramanian, and F. Cannon, 2020: Data Gaps within Atmospheric Rivers over the Northeastern Pacific. Bull. Amer. Meteor. Soc.,