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ABSTRACT

Extreme quantitative precipitation forecast (QPF) performance is baselined and analyzed by NOAA’s

Hydrometeorology Testbed (HMT) using 11 yr of 32-km gridded QPFs from NCEP’s Weather Prediction

Center (WPC). The analysis uses regional extreme precipitation thresholds, quantitatively defined as the 99th

and 99.9th percentile precipitation values of all wet-site days from 2001 to 2011 for eachRiver Forecast Center

(RFC) region, to evaluate QPF performance at multiple lead times. Five verification metrics are used:

probability of detection (POD), false alarm ratio (FAR), critical success index (CSI), frequency bias, and

conditional mean absolute error (MAEcond). Results indicate that extreme QPFs have incrementally im-

proved in forecast accuracy over the 11-yr period. Seasonal extremeQPFs show the highest skill during winter

and the lowest skill during summer, although an increase in QPF skill is observed during September, most

likely due to landfalling tropical systems. Seasonal extreme QPF skill decreases with increased lead time.

Extreme QPF skill is higher over the western and northeastern RFCs and is lower over the central and

southeastern RFC regions, likely due to the preponderance of convective events in the central and south-

eastern regions. This study extends the NOAA HMT study of regional extreme QPF performance in the

western United States to include the contiguous United States and applies the regional assessment recom-

mended therein. The method and framework applied here are readily applied to any gridded QPF dataset to

define and verify extreme precipitation events.

1. Introduction

Extreme precipitation events (i.e., those events asso-

ciated with the tail end of the precipitation probability

distribution) are highly impactful and can cause loss

of life, damage to property, and significant disruption

to local, regional, and national economies. Extreme

precipitation events can range from short and intense
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periods of rainfall that result in flash flooding (e.g.,

mesoscale convective rainstorms) to prolonged periods

of precipitation that result in the flooding of rivers and

streams (e.g., landfalling atmospheric rivers); however,

correctly forecasting extreme precipitation events re-

mains one of the most difficult challenges in operational

meteorology.

The demand for accurate quantitative precipitation

forecasts (QPFs), particularly for extreme events, is

echoed by many user communities [e.g., water resources

management, industry, agriculture, transportation, gov-

ernment, emergency management; Ralph et al. (2005)]

who require these forecasts for preparation, decision

making, and management to effectively mitigate the

subsequent impacts of extreme precipitation events. In

fact, recent forecast-use studies have shown that pre-

cipitation forecasts are the most heavily utilized part of

standard forecasts (Lazo et al. 2009). However, the fore-

cast skill for these events is often insufficient to accurately

and consistently predict the location, amount, type, and

timing of precipitation (e.g., Olson et al. 1995; Cherubini

et al. 2002; Charba et al. 2003; Ralph et al. 2003; Morss

and Ralph 2007; Brennan et al. 2008; Ralph et al. 2010;

Schumacher and Davis 2010; Novak et al. 2011).

A major example of the need for accurate extreme

QPFs is the recent case of the Howard Hanson Dam

flood risk management crisis (White et al. 2012). This

crisis arose in 2009 when the Howard Hanson Dam,

a flood-control dam above Seattle, Washington, showed

signs of potential dam failure and was declared unsafe.

The ensuing preparations for the following winter in-

cluded identifying the heavy precipitation thresholds

that would trigger the evacuation of a heavily populated

region downstream of the dam and improving QPF

products to more accurately predict those heavy pre-

cipitation thresholds at various lead times. Although

insufficient time has passed to fully quantify the results

and impacts of this effort, these improvements have al-

lowed the National Weather Service (NWS) to provide

much improved flood watches and warnings for this

flood mitigation effort.

Improvement of QPFs, particularly extreme QPFs, is

a high priority in meteorological research (e.g., National

Weather Service 1999; Fritsch and Carbone 2004; Ralph

et al. 2005). Accurate QPFs, particularly for extreme

precipitation events, are a forecast challenge for both

humans and numerical weather prediction (NWP)

models due to the high temporal and spatial variability

of precipitation (Ebert et al. 2003). While QPF improve-

ments can be made in various ways (e.g., better data as-

similation techniques, improved understanding of the

dynamical and physical processes associated with heavy

precipitation events, better physical parameterizations

in the forecast models, etc.), a crucial component is

forecast verification. QPF verification is critical in as-

sessing forecast trends and biases, identifying forecast

errors, monitoring forecast improvement, and providing

users with information to most effectively use QPFs

(Murphy andWinkler 1987; Jolliffe and Stephenson 2003).

Since 1961, the National Oceanic and Atmospheric

Administration’s (NOAA) National Centers for Envi-

ronmental Prediction (NCEP) Weather Prediction

Center (WPC) has monitored annual QPF performance

using the threat score for various 24-h precipitation

thresholds for day-1 (24 h) lead times over the contigu-

ous United States (CONUS; Olson et al. 1995.) The

threat score is a simple calculation that indicates relative

forecast accuracy by measuring the degree of co-

incidence between forecast and observed events for

a given precipitation threshold (Stanski et al. 1989).

Over the last 50 yr, this metric has shown gradual but

steady improvement over multiple thresholds for the

day-1 precipitation forecasts created by the WPC and

verified with a manually, quality-controlled quantitative

precipitation estimation (QPE) product (Fig. 1; Anthes

1983; Olson et al. 1995). Today, the yearly QPF metric

tracked by the Government Performance and Re-

sults Act (GPRA) of 1993 (www.whitehouse.gov/omb/

mgmt-gpra/gplaw2m) is the 1.0 in. (25.4mm) (24 h)21

threat score over the CONUS calculated from the WPC

day-1 QPF product. While the threat score is useful in

assessing relative forecast improvements (e.g., Reynolds

2003; Charba et al. 2003), this verification metric does

not adequately assess the performance of extreme

events, which occur less frequently and over smaller

areas than lesser precipitation events. The threat score

FIG. 1. Annual threat scores for the WPC’s 0.50-in. (12.7mm),

1.0-in. (25.4mm), and 2.0-in. (50.8mm) forecasts for day 1 from

1961 through 2011.
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metric is also sensitive to forecast hits, penalizes both

misses and false alarms, and it does not distinguish the

source of forecast errors. In addition, the threat score by

itself (or any single metric for that matter) cannot pro-

vide a complete picture of forecasting successes and

errors (Murphy and Winkler 1987; Doswell et al. 1990).

The Hydrometeorology Testbed (HMT; hmt.noaa.

gov) was established in 2003 to address both the scien-

tific and practical challenges associated with forecasting

extreme precipitation to help improve operational

forecasting skill (Ralph et al. 2005, 2013b). A key driver

of HMT was the recognition that the current metric

(i.e., threat score) and precipitation threshold [1.0 in.

(25.4mm) (24 h)21] used to assess annual national

forecast skill is inadequate for monitoring and analyzing

extreme QPF performance and does not represent re-

gional variations.

Previous HMT work by Ralph et al. (2010) developed

a method for monitoring and verifying extreme QPF

performance by analyzing 4-km QPF data from the

California–Nevada River Forecast Center (CNRFC)

and the Northwest River Forecast Center (NWRFC) at

41 sites along the U.S.West Coast over the 2005–06 cool

season. Using five verification metrics [probability of

detection (POD), false alarm ratio (FAR), critical suc-

cess index (CSI; i.e., threat score), frequency bias, and

conditional mean absolute error (MAEcond)], Ralph

et al. (2010) found that most of the extreme precipita-

tion events [i.e., defined in that paper as events with

precipitation $3.0 in. (76.2mm) (24 h)21 and $5.0 in.

(127.0mm) (24 h)21] that occurred were underforecast,

especially at longer lead times. In addition, the CNRFC

region had significantly more extreme events, when

defined by the $3.0 in. (76.2mm) (24 h)21 and $5.0 in.

(127.0mm) (24 h)21 thresholds, than the NWRFC re-

gion. This led Ralph et al. (2010) to determine that one

national threshold could not accurately define extreme

precipitation events over different geographical areas.

Based upon these results, Ralph et al. (2010) proposed

monitoring and verifying extreme precipitation events

over the CONUS by defining regionally relevant ex-

treme precipitation thresholds by top percentiles (i.e.,

1.0% and 0.1%) and then applying a simple verification

framework using five performance metrics to ensure

that the quality of the precipitation forecast is thor-

oughly assessed.

This paper represents an implementation of the Ralph

et al. (2010) findings by using over a decade’s worth of

data rather than that of one winter season, by applying

the Ralph et al. (2010) verification method nationally

and regionally rather than to one test bed area, and by

using gridded WPC QPF–QPE data rather than QPF–

QPE from the CNRFC and NWRFC at 41 points. By

applying the extreme QPF definitions and verification

framework proposed by Ralph et al. (2010) to the 32-km

WPC gridded operational QPF dataset over the

CONUS, this paper benchmarks extreme QPF perfor-

mance over an 11-yr period by evaluating the general

change in extreme QPF performance over time. While

the results presented here are not necessarily statisti-

cally significant due to the relatively short 11-yr analysis

period, this work aims to verify and study the extreme

QPF performance metrics necessary to quantify and

improve the timing, location, and amount of predicted

precipitation. Section 2 describes the QPF and QPE

data used in this analysis. Section 3 provides an overview

of the verification software and methodology used to

analyze QPF performance, while section 4 objectively

defines regional extreme precipitation thresholds for the

data analyzed. Sections 5 and 6 present national and

regional results, respectively, by lead time and season,

and section 7 summarizes this research and describes

future research and applications.

2. Data

The primary forecast and verification data evaluated

in this study were 32-km gridded QPF and QPE data

products obtained from the now-defunct National Pre-

cipitation Verification Unit (NPVU).1 These data cover

theCONUS for the period from1 January 2001 through 31

December 2011, and this 11-yr period is studied because

it was the longest continuous period of data available

from the NPVU. All verification was performed on a

32-km Lambert conic conformal grid. Grid points with

missing QPF and/or missing QPE data were eliminated

from the dataset. All precipitation amounts (observed

and predicted) examined in this paper are in English

units with International System of Units (SI) in paren-

theses, since precipitation forecasts in the United States

are commonly issued in units of inches.

a. Operational QPF product

Forecast data obtained from the NPVU are 6-hourly,

32-km QPF grids generated by the NCEP’s WPC. The

WPC is an NCEP service center that produces daily

QPFs for the CONUS and has done so since 1960. These

QPFs rely heavily on NWP guidance available from the

suite of NCEP and international operational forecast

models. Details regarding the WPC QPF process are

described in Olson et al. (1995) and NWS (1999). The

WPC issues gridded CONUSQPFs for 6-hourly intervals

1 The NPVU was suspended as of 23 February 2012 due to

budget constraints.
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out to 84 h, which were archived at the NPVU until

February 2012. All of the WPC QPF amounts repre-

sent spatially averaged precipitation amounts over a

32-km grid.

This study evaluates 24-h precipitation amounts ac-

cumulated from the 6-hourly QPF grids for the 12–36-,

36–60-, and 60–84-h forecast periods, hereafter called

day 1, day 2, and day 3, respectively. Day-1 QPFs are

analyzed from 2001 through 2011, while day-2 and day-3

QPFs are analyzed from 2003 through 2011. Prior to

2003, day-2 and day-3 QPFs were available from the

NPVU only for western RFC regions [i.e., CNRFC,

NWRFC and the Colorado basin RFC (CBRFC)] dur-

ing the cool season (i.e., October–March); thus, for the

national yearly QPF analysis, day-2 and day-3 QPFs

were not verified before 2003.

b. Verification data

The QPE data used for verification in this study are

24-h accumulated precipitation amounts produced by

the NWS RFCs on the 4-km Hydrologic Rainfall

Analysis Project (HRAP) grid (stage IV). In the eastern

United States, the RFC QPE data come from the stage

III precipitation dataset, which is a blend of quality-

controlled gauge, radar, and satellite data to obtain

a composite best estimate of the precipitation distribu-

tion (Breidenbach et al. 1999; Fread et al. 1995; Fulton

et al. 1998; McDonald and Graziano 2001.) In the

western United States, RFC QPE data are obtained

using precipitation gauge measurements that are grid-

ded using Mountain Mapper (MM; Henkel and

Peterson 1996), which converts gauge-point data to the

4-km HRAP grid using the Parameter–elevation Re-

gressions on Independent Slopes Model (PRISM) cli-

matology (Daly et al. 1994; McDonald and Graziano

2001). After each RFC gathers the appropriate stage III

data, RFC Hydrometeorological Analysis and Support

(HAS) forecasters manually quality control the QPE

fields to remove gross errors and to ensure spatial con-

tiguity in the precipitation fields (Antolik 2000). Each

NWS RFC then sends its adjusted QPE product (now

referred to as stage IV) on the 4-km HRAP grid to the

NPVU. At the NPVU, the 4-km QPE grid was upscaled

to a 32-km grid using spatial averaging, where spatial

averaging is a simple average of all of the original grid

points within the area of the output grid. Further details

on the NPVU QPE product can be found in McDonald

and Graziano (2001) and Antolik (2000).

c. WPC-calculated threat scores

Since 1961, the WPC has used the threat score (i.e.,

CSI) as a metric to monitor the progress and quality of

the WPC QPFs (Olson et al. 1995). With an in-house,

consistently maintained threat score verification scheme,

the WPC has archived over 50 yr of annual day-1 threat

scores for precipitation events exceeding 0.5 in. (12.7mm)

and 1.0 in. (25.4mm) (24h)21, and over 40 yr of annual

day-1 yearly threat scores for precipitation events ex-

ceeding 2.0 in. (50.8mm) (24 h)21 (Fig. 1).

WPC forecasters compute annual threat scores by

verifying WPC QPFs with human quality-controlled

quantitative precipitation analyses. These analyses are

based on a first-guess field from either the multisensor

stage IV QPE mosaic analyses (Lin and Mitchell 2005)

or the daily Climate Prediction Center (CPC) precipi-

tation analysis (http://www.cpc.ncep.noaa.gov/products/

Global_Monsoons/gl_obs.shtml). The WPC forecaster

manually performs a quality control routine on the first-

guess field by using additional data sources, such as ra-

dar precipitation estimates, Community Collaborative

Rain, Hail and Snow Network (CoCoRaHS) observa-

tions, Cooperative Observer Network (COOP) data,

and aviation routine weather report (METAR) obser-

vations. When the WPC forecaster is satisfied with the

analysis, both the WPC gridded QPFs and the manually

quality-controlled precipitation analysis (e.g., QPE) are

mapped onto the 32-km HRAP grid and threat scores

are computed. The WPC QPFs are verified for amounts

equal to or greater than 0.5 in. (12.7mm) (24 h)21 with

amounts greater than 6.0 in. (152.4mm) (24 h)21 rare

since WPC QPFs represent 32-km spatial averages.

3. Verification methodology

In this study five metrics are calculated and evaluated:

POD, FAR, CSI, frequency bias, and MAEcond. These

metrics are utilized because they are simple, easily un-

derstood scores with which most operational forecasters

are familiar, particularly WPC forecasters. In addition,

since 1) the CSI is the yearly GPRA standard and 2) the

WPC has been monitoring the CSI for over 50 yr, con-

tinued analysis of the CSI, with the added information

provided by thePOD,FAR, frequency bias, andMAEcond,

allows for WPC QPF performance to be relatively evalu-

ated by lead time, season, and region.

a. Verification metrics

Performance measures are verification metrics that

focus on the correspondence between the forecasts

and observations (Murphy 1993). In this study, an event

is defined as a 24-h period (1200–1200 UTC) when the

predicted P and/or observed O accumulated precipi-

tation at a 32-km grid point matches or exceeds a speci-

fied precipitation threshold. When a grid point has both

an observed and predicted event, a hit H occurs. When

a grid point has a predicted event that is not observed,
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a false alarm F occurs, and when a grid point has an

observed event that is not predicted, a miss M occurs.

Table 1 provides a summary of these variables displayed

in a 2 3 2 contingency table.

The POD is the ratio of the number of correct fore-

casts H to the number of observed events (H 1 M) and

the FAR is the ratio of the number of false alarms F to

the number of forecasts made (H 1 F). The CSI (i.e.,

threat score) is the ratio of the correct forecastsH to all

events either forecast or observed (H 1 M 1 F). All

three metrics range from 0 to 1, with 1 being perfect

POD and CSI scores, and 0 being a perfect FAR score.

Note that a perfect forecast system would produce only

hits with no false alarms or misses.

To characterize the accuracy of QPFs (i.e., how close

the forecasts, or predictions, are to the eventual out-

comes), the MAEcond, which is the average of the ab-

solute errors, is utilized. In this study, the MAEcond is

computed conditionally for QPE (observed) values

greater than a specified precipitation threshold to an-

swer the question: For the extreme events that were

observed, how accurate is the forecasted amount of

precipitation? Information about the variance of the

forecast from the observed precipitation amount is given

by MAEcond, which does not indicate the direction of

that error. However, the smaller theMAEcond, the more

accurate the QPF.

To understand how the QPFs overforecast–under-

forecast precipitation, the frequency bias (hereafter re-

ferred to as bias) is calculated from the ratio of the

number of predicted events to observed events for all

events (both observed and predicted) exceeding a given

threshold. The bias ranges from 0 to infinity, with a bias

equal to one being an unbiased forecast. By calculating

the bias for all events, this metric can aid in identifying

overforecasting and underforecasting properties of

QPFs, where overforecasting occurs when the bias ex-

ceeds one and underforecasting occurs when the bias is

less than one.

It is important to note that all five metrics, when an-

alyzed individually, have limitations. The POD is sen-

sitive to hits, but it ignores false alarms. This makes it

a good measure for rare events, but it can be artificially

improved by just issuing more ‘‘yes’’ forecasts to in-

crease the number of hits. The FAR is sensitive to false

alarms, but it ignores misses. Like the POD, it is very

sensitive to the climatological frequency of the event

(number of hits), and therefore it should be used in

conjunction with the POD for optimal QPF perfor-

mance feedback. The CSI is sensitive to hits and it pe-

nalizes both misses and false alarms. Rare events do not

do well with this score as the CSI depends on the cli-

matological frequency of events, thus resulting in poorer

scores for rarer events (Mason 1989).

Although it is beyond the scope and aim of this paper,

it should be noted that recent progress has been made

in the verification of extreme events (e.g., Casati et al.

2008; Ebert et al. 2013). In particular, new verification

metrics have been developed and are being tested, such

as the extreme dependency score (EDS; Stephenson

et al. 2008; Ghelli and Primo 2009), the stable extreme

dependency score (SEDS; Hogan et al. 2009), the ex-

tremal dependence indices (EDIs; Ferro and Stephenson

2011), and the symmetric extremal dependence index

(SEDI; Ferro and Stephenson 2011).

b. Verification software

Verifying large gridded datasets over extended pe-

riods of time, such as the 11 yr of data evaluated in this

study, cannot be completed manually with any efficiency;

thus, verification software is required. Model Evaluation

Tools (MET) is a verification software package devel-

oped and maintained by the Developmental Testbed

Center (DTC) for use by the meteorological community

to help in assessing and evaluating the performance of

numerical weather predictions (www.dtcenter.org/met/

users/). MET is a highly configurable, state-of-the-art set

of evaluation tools that can be applied to any gridded

product. By comparing gridded forecast data to similarly

gridded observational data, MET can be configured to

calculate standard verification scores.

To ensure that the MET verification software outputs

verification results similar to the WPC-calculated veri-

fication scores (Fig. 1), yearly threat scores were calcu-

lated for 2001–11 using theMET software on the NPVU

QPF and QPE datasets described in section 2. Figure 2

shows the MET-calculated threat scores overlaid with

the WPC-calculated threat scores for the same 24-h

precipitation thresholds used in Fig. 1: 0.5 in. (12.7mm),

1.0 in. (25.4mm), and 2.0 in. (50.8mm). The shape of the

MET time series is consistent with the shape of theWPC

time series, although the MET scores are slightly lower

for both the 0.5 in. (12.7mm) and 1.0 in. (25.4mm)

thresholds and vary (both higher and lower) for the

2.0 in. (50.8mm) threshold. The WPC and MET curves

are not exactly the same because the QPE product used

internally by the WPC differs from the NPVU QPE

product used in this study. As described in section 2c, the

TABLE 1. Contingency table of the four possible outcomes for

categorical forecasts of a binary (yes–no) event. NO 5 not ob-

served; NP 5 not predicted; CR 5 correct rejection.

Events O NO

P H F

NP M CR
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WPC QPE product is manually quality controlled. In ad-

dition, WPC QPE values do not exceed 6 in. (152.4mm)

(24h)21, whereas the MET analysis allows for the verifi-

cation of forecasts exceeding 6.0 in. (152.4mm) (24h)21.

Finally, the WPC QPF verification methodology is dif-

ferent from the MET verification software. Fortunately,

this study is focused on the incremental and relative im-

provement of only one forecast product over a period of

time so although the MET-derived and WPC-calculated

threat scores are not identical, the MET software does

represent the WPC threat scores adequately enough to

be used in this study to calculate other performance

metrics (e.g., POD, FAR, bias, and MAEcond) and ana-

lyze extreme QPF performance.

4. Extreme precipitation events

Extreme precipitation events can be defined in many

ways; however, currently there is no accepted standard

for defining such an event. To better quantify extreme

precipitation events, this paper defines these cases as

those events that exceed the 99th (top 1.0% events) or

the 99.9th (top 0.1% events) percentile values of all

precipitation events in a 24-h period.

a. Regional extreme precipitation thresholds

Due to the varying climatology in different regions of

the CONUS (e.g., landfalling tropical storms in the

Southeast, atmospheric rivers on the West Coast, me-

soscale convective systems in the central plains, and

monsoons in the Southwest), it follows that extreme

event thresholds will vary by region. Per the methodol-

ogy of Ralph et al. (2010), regional thresholds for the top

1.0% and top 0.1% events were calculated over each

RFC area for the gridded 32-km QPE dataset over the

11-yr period (Fig. 3).

To calculate these extreme event thresholds, all ob-

served wet-site days [i.e., grid points with precipitation

FIG. 2. Annual WPC-derived (WPC; dotted line) and MET-

derived (MET; solid line) threat scores for 0.50 in. (12.7mm; red),

1.0 in. (25.4mm; blue), and 2.0 in. (50.8mm; black) for day-1 pre-

cipitation forecasts from 2001 through 2011.

FIG. 3. CONUS NWS RFC regional thresholds for daily precipitation amounts calculated

from theNPVU’s 32-km gridded stage IVQPE data. In eachRFC region, the top number is the

threshold of the top 1.0% of precipitation events and the bottom number the threshold of the

top 0.1% of precipitation events over the period from 2001 to 2011 (in.). RFC regions are color

coded into four broad U.S. geographical regions: West (green), upper Midwest (red), South/

Southeast (yellow), and East/Northeast (blue).
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values greater than 0.0 in. (0.0mm) (24 h)21] within an

RFC region were collected over the 11-yr period and

sorted from largest to smallest precipitation amount.

Table 2 lists the number of wet-site days for each region.

The 99th and 99.9th percentile values were then desig-

nated to be the extreme thresholds for the top 1.0% and

the top 0.1% observed extreme events, respectively, for

that region (Table 2).

It should be noted that since the extreme thresholds

depend on both the resolution of the QPE dataset and

the time period the QPE dataset covers, the top 1.0%

and 0.1% thresholds for extreme events will vary by

dataset (i.e., the regional extreme thresholds derived

here should not be necessarily used for extreme QPF

verification of other datasets.) Although the top 1.0%

and the top 0.1%extreme event thresholds are unique to

this dataset, the method for identifying extreme

thresholds can be applied to any dataset.

b. Frequency of extreme precipitation events

As previously mentioned, each grid point with a QPE

value exceeding 0.0 in. (0.0mm) over a 24-h period within

an RFC region is considered a wet-site day, or an event.

The number of events per RFC region depends on the

size of the RFC domain (e.g., the number of grid points

that fall within the RFC region) and on the local cli-

matological variations of the RFC region. In total, for

this study, 8084 grid points were analyzed andmore than

12.5 million events were recorded over the CONUS for

the 11-yr period.

Figure 4 shows the distribution of the number of ex-

treme precipitation events (top 1.0% and 0.1% events)

and the extreme event frequency (i.e., fraction of all wet-

site days) of all the RFC regions aggregated by year. For

the top 1.0% events, there were minimally 10 000 events

per year (Fig. 4a); for the top 0.1% events there were at

least 700 events per year (Fig. 4b). Most of the peaks in

the number of extreme events correspond to active or

above normal Atlantic hurricane seasons (e.g., 2004,

2008, and 2010). In 2002, however, although there were

an above normal number of named tropical storms, most

of these storms were weak and short lived (Pasch et al.

2004). Instead, the peak in the number of extreme events

during 2002 is most likely related to significant heavy

rain and flooding events in the upper Midwest (Waple

and Lawrimore 2003) and Texas (Nielsen-Gammon

et al. 2005; Lowrey and Yang 2008; Zhang et al. 2006).

5. National extreme QPF performance results

Since 24-h QPFs are the commonly accepted standard

in QPF verification programs (Olson et al. 1995) and

since the 24-h time period generally provides the densest

network of precipitation observations, the verification

results presented here are for 24-h QPFs. It should be

noted, however, that 24-h precipitation periods may not

be the most relevant periods for hydrological model

improvement, particularly for RFC models that use 6-h

QPF amounts to drive their operational hydrological

models. In addition, previous studies have found that

longer-lasting events (e.g., .24 h) are key to creating

floods in many major watersheds (Ralph and Dettinger

2012; Moore et al. 2012; Ralph et al. 2013a). Section 7

describes future work to expand this study to include

both shorter precipitation intervals (e.g., 1, 3, and 6 h)

aimed at assessing and improving hydrological runoff

models and longer precipitation periods (e.g., 72 h)

aimed at addressing long-lasting flood event prediction.

Annual national performance metrics are calculated

for the top 1.0% and 0.1% extreme precipitation events

TABLE 2. Total number of wet-site days, or events, and total number of grid points by RFC region. Regional extreme precipitation

thresholds are derived from 32-km gridded daily precipitation amounts as a function of RFC domain within the contiguous United States.

RFC

No. of wet-site

days

No. of 32-km

grid points

32-km grid 1.0% thresholds

[in. (mm) (24 h)21]

32-km grid 0.1% thresholds

[in. (mm) (24 h)21]

Arkansas-Red basin (AB) 769 379 539 2.0 (50.8) 3.8 (96.5)

Colorado basin (CB) 871 622 790 0.8 (20.3) 1.7 (43.2)

California–Nevada (CN) 571 051 641 1.8 (45.7) 3.6 (91.4)

Lower Mississippi (LM) 977 437 540 2.5 (63.5) 4.6 (116.8)

Middle Atlantic (MA) 401 716 192 1.8 (45.7) 4.0 (101.6)

Missouri basin (MB) 2 041 954 1312 1.4 (35.6) 2.6 (66.0)

North Central (NC) 1 483 737 837 1.5 (38.1) 2.9 (73.7)

Northeast (NE) 590 089 258 1.6 (40.6) 3.1 (78.7)

Northwest (NW) 1 438 307 777 1.3 (33.0) 2.9 (73.7)

Ohio (OH) 899 132 446 1.7 (43.2) 3.1 (78.7)

Southeast (SE) 1 258 745 659 2.3 (58.4) 4.3 (109.2)

West Gulf (WG) 1 272 814 1093 1.9 (48.3) 4.0 (101.6)

National sum (contiguous) 12 575 983 8084
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by applying the regional extreme precipitation thresh-

olds defined in section 4a (Fig. 3; Table 2) and calcu-

lating the verification output (i.e., hits, misses, false

alarms, andmatched forecast–observation pairs) at each

32-km grid point in the WPC QPF dataset, aggregating

the verification output by year over the CONUS, and

then calculating the performance metrics of interest.

The same procedure is also applied to events exceeding

1.0 in. (25.4mm) over a 24-h time period to put the ex-

treme event verification results in context with the cur-

rent verification threshold in operational practice.

a. Yearly day-1 extreme QPF performance

Figure 5 displays the annual verification scores of the

five metrics of interest for three precipitation thresholds

[i.e., 1.0 in. (25.4mm), top 1.0%, and top 0.1% events].

Bootstrapped 95% confidence intervals are computed

from contingency tables for the POD, FAR, CSI, and

bias. Beginning in 2001 and ending in 2011, the overall

annual accuracy (i.e., CSI values) of the QPFs improved

for all three thresholds, although the annual CSI values

decreasedwith increased precipitation threshold (Fig. 5c).

Examination of annual POD and FAR values pro-

vides information about why the accuracy of the QPFs

has increased from 2001 to 2011 (Figs. 5a,b). Figure 5a

shows overall improvement in the annual POD scores

for all three thresholds between 2001 and 2011, meaning

that the hit rate (i.e., the proportion of events correctly

forecast) increased for each precipitation threshold.

While an increased hit rate can be accounted for by more

events being correctly forecast, it can also increase when

more events are predicted but do not occur (i.e., more

false alarms occur). However, examination of the annual

FARscores (Fig. 5b) shows that over the same period, the

FARs decreased, indicating that the improvement seen in

the annual PODs is the result of more accurate QPFs

rather than just more forecasts being made. This implies

that the improvement in accuracy observed over the 11-yr

period is real and not an artifact of more forecasts being

issued or the verification metric chosen.

Examination of the annual biases by precipitation

threshold (Fig. 5d) shows that the top 1.0% and 0.1%

events have smaller annual bias values compared to the

1.0-in. events, which are just above and below a bias of

one. The annual bias decreases (i.e., becomes more un-

derforecast) with increased precipitation threshold, in-

dicating that the most extreme events tend to be more

underforecast than events of lesser precipitation magni-

tude. This result is similar to the results observed by

Charba et al. (2003). In terms of improvement over the

11-yr period, 1.0% and 0.1% biases vary from year to

year. The 1.0-in. events do not show marked improve-

ment, fluctuating around one over the analysis period.

The annual MAEcond values for precipitation events

exceeding the 1.0 in. (25.4mm), 1.0%, and 0.1% thresholds

are shown in Fig. 5e. As previously stated, the MAEcond is

calculated conditionally for observed events that equal or

exceed the specified threshold, meaning that forecasts

FIG. 4. Annual number of wet-site days (line) and frequency of wet-site days (bars) greater than

or equal to the top (a) 1.0% and (b) 0.1% precipitation events from 2001 through 2011.
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included in the MAEcond calculations have associated

observed precipitation amounts equal to or less than the

thresholds.As expected, theMAEcond values are larger for

larger precipitation thresholds although all three precip-

itation thresholds have decreasing errors over the analysis

period.

b. Yearly day-2 and day-3 extreme QPF performance

Extreme QPF performance is further analyzed by

examining day-2 and day-3 QPFs with the same verifi-

cation metrics as for the day-1 QPFs. Although the

longer lead times have similar patterns and trends as the

day-1 QPFs, QPF performance decreases with increased

lead time and there is more variability. It should be

noted that the shorter analysis period (9 yr) of the day-2

and day-3 QPFs limits even further the statistical sig-

nificance of defining a definite upward or downward

trend to the data; however, looking at these results can

provide preliminary information about extreme QPF

performance at lead times longer than day 1.

Figure 6 shows the yearly performance metrics for the

three lead times: day 1, day 2, and day 3 (i.e., 24, 48, and

72 h), and bootstrapped 95% confidence intervals are

included for POD, FAR, CSI, and bias. For the top 1.0%

QPFs, day 1 has the highest CSI values followed by day 2

and day 3, respectively (Fig. 6e). The top 0.1% events

also follow this trend (Fig. 6f). The annual PODs show

similar trends (Figs. 6a,b), but the yearly FARs aremuch

more variable by lead time (Figs. 6c,d). Although the

day-1 FARs have the lowest values (i.e., the better

performance), there is no distinct delineation of whether

the day-2 performance improves over the day-3 forecast

during the 9-yr period. In addition, during the years

2009–10, the FARs for the top 0.1% events are essen-

tially the same on day 1 as they were on day 3, showing

little to no improvement with lead time. This could im-

ply that perhaps the slight improvements seen in the

POD values over the same time period are the result of

overforecasting rather than better and more accurate

precipitation forecasts; however, the 9-yr sample size is

too small to make a definitive argument.

The bias scores (Figs. 6g,h) show that extreme events

are underforecast for all lead times. Figure 6g shows that

for the top 1.0% events, the day-1 annual bias is at or just

below 1 (unbiased) but the day-2 and day-3 QPFs tend to

be underforecast. The top 0.1% events have much more

variability in their annual biases but again, the day-1 biases

tend to be closer to one than the day-2 or day-3 annual

biases (Fig. 6h). Meanwhile, the yearly MAEcond values

(Figs. 6i,j) increase with increasing lead time. The error

for the top 1.0% events is approximately half of the error

of the top 0.1% events. Over the 11-yr period, the top

1.0% events appear to have decreased in error by 0.25–

0.5 in. (6.4–12.7mm) while the MAEcond values of the top

0.1%events have decreased by 0.5–0.75 in. (12.7–19.1mm).

It should be noted that there are obvious improve-

ments in the POD, FAR, CSI, and bias scores for 2008

and some improvements in 2005. These improvements

may be related to strongAtlantic hurricane seasons. The

hurricane season of 2005 is considered to be the most

active Atlantic hurricane season ever (Beven et al.

2008), and the 2008 hurricane season was above the

long-term mean (Brown et al. 2010).

c. Seasonal national extreme QPF performance

As noted bymany studies (e.g., Junker et al. 1989;Olson

et al. 1995; Fritsch and Carbone 2004), QPF performance

and skill vary significantly by season. Generally, the

highest CSIs occur during the cool season and the lowest

CSIs occur during the warm season (Olson et al. 1995). To

analyze seasonal variations in extreme QPF performance,

24-h extreme precipitation events were stratified by

month. The top 1.0% and top 0.1% thresholds were

FIG. 5. Yearly day-1 (a) POD, (b) FAR, (c) CSI, (d) bias, and

(e) MAEcond values for the CONUS from 2001 to 2011 using the

regional precipitation thresholds in Table 2. Blue, red, and black lines

indicate events exceeding 1.0 in. (25.4mm) (24h)21, the top 1.0%,

and the top 0.1% of all precipitation events, respectively. Brackets

indicate 95% confidence intervals for the skill scores and bias.
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applied to each RFC region and Fig. 7 shows the aggre-

gated monthly frequency of these events over the 11-yr

period. Over the calendar year, the number of extreme

events peaks (for both the top 1.0% and top 0.1%

thresholds) in September and is at aminimum in February.

As expected, the CSIs were higher during the cool

season and lower during the warm season (Figs. 8e,f),

even though more extreme events tend to occur during

the warm season months of June–August (Fig. 7). This

seasonal difference in CSIs can be attributed to the

scale and type of precipitation events during each

season, where summer events tend to be dominated by

small-scale processes (i.e., convection) and winter

events tend to be dominated by more synoptic-scale

events (e.g., atmospheric rivers). The slight peak in the

CSI values for days 1 and 2 during September is prob-

ably related to tropical cyclones that make landfall in

the southeastern United States. These events are syn-

optically driven and tend to be better forecast than the

smaller-scale convection.

The monthly POD and FAR scores by lead time are

shown in Figs. 8a–d. For the top 1.0% events, the PODs

are lower during the warm season and higher during the

cool season, with an increase in the September POD

scores for all three lead times (Fig. 8a). The FARs are at

a maximum during the summer months and are lower

during the winter months (Fig. 8b). Although it appears

that there is a FAR local maxima in the 0.1% events

during February (Fig. 8g), the 95% confidence interval

plus the sample distribution in Fig. 7 indicate that this

maxima is likely the result of a small sample size. For the

1.0% events, while the day-1 FAR is better for all

months, the day-2 FAR is not always better than the

day-3 FAR (e.g., July and November). For the top 0.1%

events, the PODs have a similar pattern to the top 1.0%

events; however, for the month of June there is essen-

tially no PODand the FAR is almost one, indicating that

there is essentially no skill for the approximately 1000

events that occurred during this month (Figs. 8b,d).

The monthly MAEcond values have larger values

(more error) during the summermonths and lower error

during the winter months (Figs. 8i,j). The MAEcond

values increase with increasing lead time for both the top

1.0% and top 0.1% events. Monthly biases decrease (e.g.,

FIG. 6. Yearly (a) POD, (c) FAR, (e) CSI, (g) bias, and (i)MAEcond values for the CONUS from 2001 to 2011 using

the regional precipitation thresholds in Table 2 for the top 1.0% of precipitation events. Yearly (b) POD, (d) FAR,

(f) CSI, (h) bias, and (j) MAEcond values for the CONUS from 2001 to 2011 using the regional precipitation

thresholds in Table 2 for the top 0.1% of precipitation events. Blue, red, and black lines indicate the day-1–3 forecast

intervals, respectively. (Note that data for days 2 and 3 exist only from 2003 to 2011.)
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underforecast) with increasing lead time (Figs. 8g,h).

Seasonally,more underforecasting occurs during thewarm

season (June–August) than the cool season (December–

February). The underforecasting that occurs in the warm

season is due in part to the small-scale convective nature of

many of these extreme events. Numerical model guidance

often struggles to accurately predict both the location and

the magnitude of convectively driven warm season pre-

cipitation (Fritsch and Carbone 2004). Location errors

alone for heavy precipitation associated with MCSs aver-

age around 250km in NCEP models, even within 36h of

an event (http://www.comet.ucar.edu/outreach/abstract_

final/1083387_TAMU.PDF). In scattered thunderstorms,

short distances (e.g., ,40km) can mean the difference

between significant rainfall and sunny skies. The small

spatial scales and high uncertainty make these events

particularly challenging for both numerical model guid-

ance and WPC forecasts.

6. Regional results

The extreme precipitation verification metrics pre-

sented thus far have been summary values for the 12

CONUS RFC areas combined; thus, the differences

between geographical regions are lost, being lumped

into one national dataset of annual POD, FAR, CSI,

bias, and MAEcond. As stated previously, different

regions of the United States experience different mete-

orological conditions and phenomena, and these phenom-

ena occur at different times throughout the year. It is

useful to examine the verification scores of each RFC

region separately, both annually and by season, to better

identify geographic regions, and thus meteorological

conditions, over which the WPC forecasts are better or

worse over time. In addition, it is important to recognize

that improvements to the overall national verification

metrics, which may be monitored and evaluated similar

to the current GPRA threat score, can be made through

smaller improvements byRFC region; however, methods

for improvement in one regionmay not work for another.

The following sections examine the top 1.0% and 0.1%

events for each CONUS RFC domain over a 5-yr period

(2007–11), color-coded into four broadU.S. geographical

regions: West (green), upper Midwest (red), South/

Southeast (yellow), and East/Northeast (blue). The 5-yr

period was chosen not only to maximize the sample size

of the extreme events within an RFC region, but also to

ensure that the analysis period was not too long such that

significant changes in RFC QPF performance occurred.

a. Overall regional results

The WPC’s QPF performance for the top 1.0% pre-

cipitation events shows that the highest POD and CSI

scores plus the lowest FAR values are over the western

United States (i.e., the CNRFC, NWRFC, and CBRFC

regions), followed closely by the East/Northeast U.S.

[i.e., the Middle Atlantic RFC (MARFC) and the

Northeast RFC (NERFC)] RFC areas (Figs. 9a,c,e).

These better performance values are likely the result of

the dominance of synoptically driven systems in these

FIG. 7. Monthly number of wet-site days (line) and frequency of wet-site days (bars) greater

than or equal to the top (a) 1.0% and (b) 0.1% precipitation events aggregated over 2001–11.
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areas (particularly atmospheric rivers) plus the orogra-

phy in the western United States. In contrast, the upper

Midwest and South/Southeast regions, which are prone

to smaller, convective-scale extreme events, have lower

POD and CSI values but higher FAR values. A simi-

lar QPF performance pattern emerges for the 0.1%

events; however, the East/Northeast RFCs (MARFC and

NERFC) have the highest POD and CSI values and lowest

FARvalues followedby theWestCoastRFCs andCBRFC

(Figs. 9b,d,f).Again, the lower-performingRFCregions are

in the central and southern parts of the United States.

The bias andMAEcond values associated with the skill

scores previously discussed are shown in Figs. 9g–j. The

relative performance patterns of the RFC MAEcond

values are very similar for both the top 1.0% and top

0.1% events with the smallest errors occurring along the

FIG. 8. Monthly (a) POD, (c) FAR, (e) CSI, (g) bias, and (i) MAEcond values for the CONUS from 2001 to 2011

using the regional precipitation thresholds in Table 2 for the top 1.0% of precipitation events. Monthly (b) POD,

(d) FAR, (f) CSI, (h) bias, and (j) MAEcond values for the CONUS from 2001 to 2011 using the regional precipitation

thresholds in Table 2 for the top 0.1% of precipitation events. Blue, red, and black lines indicate the day-1–3 forecast

intervals, respectively. Brackets indicate 95% confidence intervals for the skill scores and bias.
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West and East Coasts, as well as in the Northeast, and

the largest errors occurring in the central and southern

United States. In fact, the errors are about twice as large

in the southern and central RFCs [i.e., the Lower Mis-

sissippi RFC (LMRFC), Arkansas-Red basin RFC

(ABRFC), West Gulf RFC (WGRFC), and Southeast

RFC (SERFC)] as in the coastal and Intermountain

West RFCs (i.e., NWRFC, CNRFC, CBRFC, NERFC,

andMARFC). The bias values for the 1.0% events show

that the RFCs with the lowest MAEcond values (i.e.,

NERFC and CBRFC) have bias values greater than 1,

indicating overforecasting (Fig. 9g). In addition, the

CNRFC and MARFC regions are unbiased (bias 5 1).

For the 0.1% events, the NERFC and CBRFC regions

FIG. 9. Regional (a) POD, (c) FAR, (e) CSI, (g) bias, and (i) MAEcond values by RFC aggregated over 2007–11 for

the top 1.0% of precipitation events using the regional precipitation thresholds in Table 2. Regional (b) POD,

(d) FAR, (f) CSI, (h) bias, and (j)MAEcond values by RFC aggregated over 2007–11 for the top 0.1% of precipitation

events using the regional precipitation thresholds in Table 2. Bar graphs are color coded into four broad U.S. geo-

graphical regions: West (green), upper Midwest (red), South/Southeast (yellow), and East/Northeast (blue).

Brackets indicate 95% confidence intervals for the skill scores and bias.
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are again overforecast (bias . 1); however, the rest of

the RFC regions are underforecast (bias , 1) (Fig. 9h).

b. Seasonal regional extreme QPF performance

Relative seasonal variations of extreme QPF per-

formance within each CONUS RFC region are

illustrated in color-coded bar graphs of POD, FAR,

CSI, bias, and MAEcond in Fig. 10. To maximize the

sample size for this seasonal analysis, only the top 1.0%

events are analyzed and these events are divided into

cool season (December–February; DJF) events and

warm season (June–August; JJA) events rather than by

monthly events.

FIG. 10. Regional (a) POD, (c) FAR, (e) CSI, (g) bias, and (i)MAEcond values byRFC aggregated over 2007–11 for

the top 1.0% of precipitation events using the regional precipitation thresholds in Table 2 for the cool season (DJF).

Regional (b) POD, (d) FAR, (f) CSI, (h) bias, and (j) MAEcond values by RFC aggregated over 2007–11 for the top

1.0% of precipitation events using the regional precipitation thresholds in Table 2 for the warm season (JJA). Bar

graphs are color coded into four broadU.S. geographical regions: West (green), upperMidwest (red), South/Southeast

(yellow), and East/Northeast (blue). Brackets indicate 95% confidence intervals for the skill scores and bias.
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During the cool season, WPC forecasts had the highest

POD and CSI values with the lowest FARs over the West

regions (i.e., NWRFC, CNRFC, and CBRFC) and East/

Northeast regions (i.e., MARFC and NERFC), while the

scores over the upper Midwest RFCs [i.e., Missouri basin

RFC (MBRFC) and North Central RFC (NCRFC)] and

some of the South/Southeast RFCs (i.e., WGRFC and

SERFC) were poorer (Figs. 10a,c,e). During the warm

season months, as expected, the overall accuracy (i.e.,

CSI values) is lower for most of the RFC regions (Fig.

10f)—with two exceptions. First, although the CNRFC

CSI value is higher than the otherRFCwarm season CSI

values, the CNRFC does not have enough 1.0% events

during the warm season to be statistically significant and/

or included in the warm season analysis. Second, theQPF

performance in the SERFC region is actually better

during thewarm season versus the cool season. This again

may be the result of more synoptic-scale precipitation

(i.e., tropical cyclones) during this season, especially

August, versus smaller-scale, more convection extreme

precipitation.

Figures 10i and 10j show that MAEcond values tend to

be lower during the cool season and higher during the

warm season. Relative to the other RFCs, the West and

East/Northeast RFCs have smaller errors than do the

South/Southeast RFCs for both the warm and the cool

seasons. It is also interesting to note that for the cool

season, more overforecasting appears to occur than

during the warm season (Figs. 10g,h).

7. Summary and future work

This study benchmarks the performance of the WPC

32-km gridded QPFs for extreme precipitation events

over an 11-yr period (2001–11). Per the results of Ralph

et al. (2010), extreme precipitation thresholds were

quantitatively defined to be the 99th percentile and the

99.9th percentile of all wet-site days [i.e., observed

precipitation .0.0 in. (mm) (24 h)21] within an RFC

region. These extreme precipitation events are referred

to as the top 1.0% and the top 0.1% events, respectively.

Extreme WPC 32-km gridded QPF performance was

evaluated based on five verification measures: POD,

FAR, CSI, bias, and MAEcond. These scores were chosen

because they are easily understood by operational fore-

casters. DTC MET software was used to calculate the

verification output of hitsH, missesM, and false alarms F

for each RFC region during extreme precipitation events

and to identify observed–predicted gridpoint pairs ex-

ceeding a specified threshold.

National extreme QPF scores were constructed by

aggregating all of the RFC wet-site days exceeding

the respective regional thresholds, and results were

compared to the current NOAA Government Perfor-

mance and Results Act (GPRA) precipitation threshold

[$1.0 in. (24 h)21]. Not surprisingly, results show that

extreme events have lower skill in all five verification

metrics than the GPRA precipitation threshold (Fig. 5)

and that skill tends to be lower with longer lead time

(Fig. 6). However, the verification measures indicate

that the 32-km gridded extreme QPFs have incremen-

tally improved in forecast accuracy over the last 11 yr,

and that the yearly rates of improvement for the ex-

treme events are higher than the improvement rates of

the GPRA threshold events.

National extreme QPFs by season were found to have

higher skill and less error during the cool season months

(December–February) and lower skill and more error

during the warm season months (June–August) for all

three lead times. These seasonal differences can be at-

tributed to the scale and type of precipitation events that

occur during each season. The cool season is dominated

by synoptic-scale events, while the warm season tends to

be dominated by convection and small-scale processes.

For all the verificationmetrics there is a slight increase in

performance for the month of September, which is most

likely related to landfalling tropical cyclones, as these

events are well-defined rain producers and track errors

have improved over the last 11 yr (Brown et al. 2010).

To analyze regional forecast performance, verifica-

tion metrics for the extreme precipitation events for

each CONUSRFC domain over a 5-yr period (2007–11)

were analyzed. Overall, the WPC QPFs tend to verify

better in the western and eastern/northeastern United

States (i.e., CNRFC, NWRFC, CBRFC, MARFC, and

NERFC). WPC forecast errors tend to be higher and

forecast amounts to be lower in the upper Midwest

and South/Southeast United States.

Analysis of the WPC extreme QPFs by region and

season indicates that for the cool season (December–

February) the same western and eastern/northeastern

regions (CNRFC, CBRFC, NWRFC, MARFC, and

NERFC) tend to have better skill than the rest of the

United States. Also, similar to the national QPF verifi-

cation by season, the WPC QPFs have overall better

skill during the cool season and less skill during the

warm season.

The verification of extreme QPFs is highly important

to improving the prediction of these extreme events. As

previously stated, QPF verification is critical to identi-

fying and evaluating forecast trends, biases, and errors

and to monitoring forecast progress and improvement.

Although this study focused on traditional verification

metrics (i.e., POD, FAR, CSI, bias, and MAEcond), fu-

ture extreme QPF verification work should explore

other, more recently developed, verification metrics
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specifically designed for extreme events, such as the

EDS, SEDS, EDI, and SEDI. Computing these newer

extreme verification metrics and comparing them with

the more traditional verification measures should be

conducted to determine whether better verification

feedback can be gained with the addition of these met-

rics for improving extreme QPFs.

Overall, the improvement of extreme QPFs has the

potential to yield major benefits. For example, reservoir

operation control rules developed decades ago specifi-

cally did not allow for the formal use of precipitation

forecasts in making reservoir operations decisions (i.e.,

water releases), presumably because precipitation fore-

casts were too inaccurate. The water had to already be in

the streams or in the reservoirs. In the decades since then,

however, improvements have been made in QPF and

reservoir operations rules are on the verge of being re-

vised through a rigorous engineering and political pro-

cess. During these revisions, it is expected that criteria

could be established for QPF accuracies that would en-

able forecast-based reservoir operations decisions

(Demargne et al. 2014). These criteria could be expressed

in terms of POD, FAR, CSI, bias, andMAEcond. Many of

these reservoirs are in the western coastal states, where

the results in this paper indicate extreme QPF perfor-

mance is generally highest, implying that use of extreme

QPFs for major reservoir operations decisions is most

within reach for this region, and that focused efforts to

raise that performance even higher could allow for ex-

plicit use of such forecasts in water supply and flood

control decisions that could yield significant benefits.

Future work will help quantify such potential benefits.

Although this study focused on 24-h precipitation to-

tals, it is clear that other precipitation time periods (both

shorter and longer) need to be analyzed. First, improved

extreme QPF performance over shorter time periods

(e.g., 1, 3, and 6h) can aid in hydrological model im-

provement, particularly since RFCmodels use short-term

QPF to force their hydrological models. Second, recent

research has shown that longer-lasting events are key to

creating floods in major watersheds. Ralph and Dettinger

(2012) found that 3-day totals were the most useful in

defining such events from a national perspective, Moore

et al. (2012) documented a devastating 2-day extreme

event in Tennessee, and Ralph et al. (2013a) documented

that the most extreme events in Northern California were

associated with landfalling atmospheric rivers that stalled

for over 40h (some lasted over 48h). Thus, future work

will include evaluations of extremeQPFs for precipitation

intervals ranging from 6 to 72h at various lead times.

The extreme QPF performance presented in this

study will help identify gaps in current forecast skill on

a regional basis. A key step in understanding the causes

of these errors is to understand the meteorological con-

ditions that created the extreme precipitation. This is be-

ing pursued byHMTand others through case studies, such

as the recent examples from Tennessee and California

mentioned above, as well as in Washington–Oregon

(Neiman et al. 2008), Arizona (Neiman et al. 2013), and

the eastern and southeastern United States (Moore et al.

2012). Such case studies can then help guide evaluations of

current forecast tools, such as mesoscale models and data

assimilation methods (e.g., Ma et al. 2011).
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