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ABSTRACT

The ability of five operational ensemble forecast systems to accurately represent and predict atmospheric

rivers (ARs) is evaluated as a function of lead time out to 10 days over the northeastern Pacific Ocean and

west coast of North America. The study employs the recently developed Atmospheric River Detection Tool

to compare the distinctive signature of ARs in integrated water vapor (IWV) fields frommodel forecasts and

corresponding satellite-derived observations. The model forecast characteristics evaluated include the pre-

diction of occurrence ofARs, the width of the IWV signature ofARs, their core strength as represented by the

IWV content along the AR axis, and the occurrence and location of AR landfall. Analysis of three cool

seasons shows that while the overall occurrence of ARs is well forecast out to a 10-day lead, forecasts of

landfall occurrence are poorer, and skill degrades with increasing lead time. Average errors in the position of

landfall are significant, increasing to over 800 km at 10-day lead time. Also, there is a 18–28 southward position
bias at 7-day lead time. The forecast IWV content along the AR axis possesses a slight moist bias averaged

over the entire AR but little bias near landfall. The IWV biases are nearly independent of forecast lead time.

Model spatial resolution is a factor in forecast skill and model differences are greatest for forecasts of AR

width. This width error is greatest for coarser-resolution models that have positive width biases that increase

with forecast lead time.

1. Introduction

Accurately forecasting extreme precipitation and

flooding is important for the protection of human lives

and property, and is a critical mission of weather services

throughout the globe. Depending on the geographic re-

gion, different types of weather systems are responsible

for the most significant precipitation events. Along the

coastal regions of the western United States, the most

extreme precipitation typically occurs during the win-

tertime cool season (Ralph and Dettinger 2012). Recent

research has demonstrated that major winter flooding

events both in California and the Pacific Northwest were

accompanied by the presence of features termed atmo-

spheric rivers (Ralph et al. 2006; Neiman et al. 2008a;

Neiman et al. 2011).

Atmospheric rivers (ARs) are long, narrow regions of

intense water vapor transport within the lower atmo-

sphere (e.g., Zhu and Newell 1998; Ralph et al. 2004) that

represent a subset corridor within a broader region of

generally poleward heat transport in the warm sector of

extratropical cyclones (Neiman et al. 2008b). Combining

moist neutrality, strong horizontal winds, and large water

vapor content, ARs can foster heavy orographic pre-

cipitation when they make landfall (e.g., Ralph et al. 2005;

Neiman et al. 2008a). While the extreme precipitation can

result in flooding as cited above, the results can also be

beneficial, as AR events contribute significantly to the

seasonal water supply in the western United States

(Dettinger et al. 2011; Guan et al. 2010).

Given their critical role in the global water cycle and

extreme precipitation, it is important to understand how

well ARs are represented and predicted in current nu-

merical weather prediction (NWP) models. Analysis of

quantitative precipitation forecasts (QPF) by Ralph

et al. (2010) showed that some of the largest QPF fore-

cast errors were associated with landfalling atmospheric

rivers. Forecasters rely heavily on themodel guidance of

AR activity for issuance of flood warnings along the U.S.

west coast.While the accuracy of forecasts of the intensity

and landfall location of tropical cyclones are closely

monitored, quantitative evaluations of forecasts of ARs
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and Pacific landfalling winter storms are found to be

lacking. Real-timeweb pages at our laboratorymonitoring

forecast fields for the presence of ARs are frequently

viewed, but more guidance on the forecast reliability and

categorization with respect to climatology has been re-

quested. This paper fills an important gap in understanding

the cause of large QPF errors in extreme events on the

U.S. west coast by documenting the uncertainties in

predicting the phenomena primarily responsible for the

extreme precipitation: atmospheric rivers.

Forecast verification can be approached in many

ways, both with respect to variables and the validation

source. Previous model forecast evaluations for storms

in the northeastern Pacific have largely focused on sea

level pressure and cyclone center characteristics asso-

ciated with extratropical cyclones (e.g., McMurdie and

Mass 2004; McMurdie and Casola 2009; Froude 2010).

To specifically consider ARs, object- or feature-based

techniques can be employed to identify distinct events

and evaluate important characteristics such as position,

extent, and frequency of occurrence. Ideally, ARs are

best characterized in terms of the water vapor transport,

which defines the features and is closely related to their

potential for orographic precipitation. In one recent

object-based effort, Clark et al. (2011) evaluate the er-

rors in forecasts of water vapor transport associated with

ARs from the Global Forecast System (GFS) model

through comparisons against the model analysis corre-

sponding to the valid time of the forecast. While com-

parisons against analyses or a reanalysis product enable

very direct comparisons, to achieve complete model in-

dependence and facilitate comparisons with multiple

models, validation against direct observations is desirable.

Aircraft flight-level and dropsonde observations allow

a detailed evaluation of the representation of ARs (in-

cluding their water vapor transport) in NWP forecasts

and reanalyses for a few select recent cases. The National

Oceanic and Atmospheric Administration (NOAA) led

Winter Storms andPacificAtmosphericRivers (WISPAR)

experiment in February–March 2011 resulted in the

sampling of three ARs with dropsondes deployed from

the National Aeronautics and Space Administration

(NASA) unmanned Global Hawk aircraft along with

additional observations of one of the ARs with drop-

sondes deployed from the NOAAG-IV aircraft flying a

Winter StormsReconnaissancemission. Two earlierARs

were also sampled with dropsondes from the NOAA P-3

aircraft. The limited number of these cases, however,

precludes a comprehensive evaluation of model forecast

accuracy.

Because aircraft data like these are only available

episodically and there are no other direct observations

of water vapor transport over the oceans, validation of

significant numbers of forecasts of ARs against direct

observations requires the use of fields different than the

water vapor transport. Fields common to both the

models and observations are required. Current satellite

sensors are unable to quantify the water vapor transport

due to a lack of information on the vertical wind profile.

Based on comparisons with aircraft observations, Ralph

et al. (2004) demonstrated that satellite-based retrievals

of the vertically integrated water vapor (IWV) content

could be successfully used as a proxy for the identifica-

tion of ARs over the ocean and developed objective

criteria to identify the features. Employing this approach,

Neiman et al. (2008b) demonstrated that, in a composite

sense, the National Centers for Environmental Pre-

diction–National Center for Atmospheric Research

(NCEP–NCAR) reanalysis accurately depicts the posi-

tion and orientation of AR plumes, but they did not

compare individual events in detail. This paper builds

upon this work and utilizes a feature-based method to

evaluate the representation of ARs based on their IWV

signature on a case-by-case basis.

Visually evaluating the performance of multiple models

over an extended period across a large geographic area

is very time consuming, particularly if considering sev-

eral different lead times, because of the large number of

fields that must be examined. To facilitate the verifica-

tion of AR forecasts, a new automated, objective tech-

nique for the identification and characterization of the

IWV signature of ARs in both model and observational

fields has been developed and validated (Wick et al.

2013). The technique, the AR Detection Tool for IWV

(ARDT-IWV), utilizes basic image-processing tech-

niques such as thresholding and skeletonization to im-

plement and extend the objective criteria for the length

(.2000 km), width (,1000 km), and IWV content

(.2 cm) for ARs that was first defined by Ralph et al.

(2004) and used in multiple later studies. In initial

evaluations, the ARDT-IWV proved highly successful

(92.4% critical success index and a 98.5% probability of

detection) in identifying landfalling AR events in sat-

ellite IWV imagery in comparison with a manually de-

rived climatology (Wick et al. 2013). Moreover, the

ARDT-IWV is particularly well suited for the verifica-

tion of model fields since identical objective criteria are

applied to both the model and observation fields.

This paper employs the ARDT-IWV to evaluate the

ability of several operational ensemble prediction sys-

tems to accurately forecast the IWV signature of ARs in

the northeast Pacific Ocean roughly in the region from

Hawaii to the west coast of North America. The exis-

tence and characteristics of ARs in the model fields are

compared against corresponding satellite-derived obser-

vations of IWV. Control forecasts from five prominent
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ensemble prediction systems over the months of October–

March for the three cool seasons from2008–09 to 2010–11

are evaluated as a function of lead time out to 10 days.

The key characteristics of the forecasts evaluated include

1) the predictions of AR occurrence, 2) the width of the

IWV signature of ARs, 3) the core strength of the ARs as

represented by the IWV content along the AR axis, and

4) the occurrence and location of landfall of the ARs.

Particular attention is given to the impact of the spatial

resolution of the different forecast models. Section 2

introduces the specific NWP models evaluated and the

satellite-derived IWV products used in their verification.

Section 3 describes the approach and methods employed

in themodel assessment, and the results are presented in

section 4. Implications and conclusions from this work

are summarized in section 5.

2. Data

a. NWP models

The ability of five different operational ensemble

prediction systems to accurately forecast and represent

ARs is evaluated in this study. These models include

those from NCEP, the European Centre for Medium-

Range Weather Forecasts (ECMWF), the Met Office

(UKMO), the CanadianMeteorological Center (CMC),

and the Japan Meteorological Agency (JMA). The

evaluation was performed for the models’ analysis fields

and the control forecast fields at lead times of 1, 3, 5, 7,

and 10 days, where available. Multiple ensemble mem-

bers and the ensemble mean were not tested. To achieve

the best temporal coincidence with the available satel-

lite observations, the 1200UTCmodel runs were used in

each case.

The forecast model data were obtained through The

Observing System Research and Predictability Ex-

periment (THORPEX) Interactive Grand Global En-

semble (TIGGE; e.g., Bougeault et al. 2010). Data were

downloaded from the portalmaintained at ECMWF.The

extracted model fields were labeled as total column

water. Evaluations were performed for the months of

October–March for the three cool seasons from 2008–

09 to 2010–11.

The following text describes the basic relevant char-

acteristics of each model and a summary is included in

Table 1. Since the models are operational, changes im-

pacting the model characteristics may have occurred

over the 3-yr verification period.

The ECMWF Ensemble Prediction System (EPS)

uses the ECMWF Integrated Forecast System model,

employing four-dimensional variational data assimila-

tion (4DVAR). The horizontal resolution of the model

was TL399 out through 10 days, corresponding to ap-

proximately 0.458. The data were regridded onto a 0.58 3
0.58 grid for application of the ARDT and comparison

with the satellite-derived observations. The model con-

tained 62 vertical levels. An overview of the ensemble

system is included in Buizza et al. (2007). Forecasts ex-

tended out to 15 days (at reduced horizontal resolution),

but only the first 10 days were considered.

The NCEPGlobal Ensemble Forecast System (GEFS)

employs the Global Forecast System (GFS) model in-

corporating the gridded statistical interpolation (GSI)

assimilationmethod. Themodel resolutionwas T126with

output on a 18 grid. Verification of the forecasts was

conducted on this 18 grid. The model contained 28 ver-

tical levels. Forecasts were available out to 16 days.

The UKMO EPS uses the Met Office Global and Re-

gional Ensemble Prediction System (MOGREPS; e.g.,

Bowler et al. 2008) employing 4DVAR. The horizontal

resolution of the model was 0.8338 latitude 3 1.258 lon-
gitude on a regular grid. For comparisonwith the satellite-

derived fields, the data were regridded onto a 18 grid.
Vertically, 38 levels were used. Forecasts were produced

out to 15 days.

The CMCGlobal Ensemble Prediction System (GEPS)

uses the Global Environmental Multiscale Model (GEM)

and an ensemble Kalman filter assimilation method. The

model resolution was 0.98 with 58 vertical levels. Output

was remapped onto a 18 grid for verification. Forecasts

were available out to 16 days. Additional details on the

Canadian EPS are included in Charron et al. (2010).

The JMA 1-week ensemble prediction system (WEPS)

uses the Global Spectral Model (GSM) and a 4DVAR

scheme. The model resolution was T319 with 60 vertical

levels. Output was obtained at 1.258 resolution and re-

mapped onto a 18 grid. Forecasts were only produced out

to 9 days, making this the only of the models evaluated

without a 10-day forecast.

b. Satellite data

The reference product for validation of the various

models’ representation of ARs was taken to be

TABLE 1. Summary of key characteristics of the operational en-

semble prediction systems evaluated in this study.

Model

center

Model

horizontal

resolution

Grid

resolution for

comparison

Forecast

fields

evaluated (h)

ECMWF TL399 0.58 3 0.58 0, 24, 72, 120, 168, 240

NCEP T126 18 3 18 0, 24, 72, 120, 168, 240

UKMO 1.258 3 0.8338 18 3 18 0, 24, 72, 120, 168, 240

CMC 0.98 18 3 18 0, 24, 72, 120, 168, 240

JMA T319 18 3 18 0, 24, 72, 120, 168
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satellite-derived fields of IWV. The IWV over the oceans

was retrieved from passive microwave observations from

the Special Sensor Microwave Imager (SSM/I) and the

Special Sensor Microwave Imager/Sounder (SSM/IS)

flying on theDefenseMeteorological Satellite Program

(DMSP) satellites using the statistical algorithm of

Wentz (1995). Retrievals were generated from the or-

bital data from the SSM/I on the F-13 satellite (through

November 2009) and SSM/IS on the F-16 and F-17 sat-

ellites and then mapped onto grids at 0.58 and 1.08 reso-
lution for comparison with the model fields. The native

resolution of the IWV retrievals is approximately 40km.

Due to calibration issues with the SSM/IS (e.g., Kunkee

et al. 2008), the brightness temperatures were linearly

mapped to those of the SSM/I F-13 using a technique

closely modeled after Yan and Weng (2008) and em-

ployed in real-time diagnostics at NOAA’s Earth System

Research Laboratory (ESRL).

All available data from the different sensors for the

period from 1200 to 2359 UTC each day were combined

into single grids. For the region of study in the north-

eastern Pacific, the data typically corresponded to be-

tween 1300 and 1600 UTC, providing good coincidence

with the forecast fields initialized at 1200 UTC and valid

at 24-h intervals. An average effective time difference

between the satellite data and forecast fields was ap-

proximately 2 h. While this time difference could be

eliminated entirely through comparison against re-

analysis data, the comparison against observations was

determined to be a priority for this study so that numer-

icalmodels do not influence the ‘‘observed’’AR structure

in any way. Nevertheless, the time difference does in-

troduce a source of uncertainty that will be explicitly

addressed in the analysis. For a typical propagation

speed of ;50 kmh21, 2 h would correspond to a differ-

ence of approximately 100 km in position. The high de-

gree of consistency in time of the contributing satellite

observations resulting from the similarity of the orbits

and overpass times of the different sensors limits the

amount of blurring of propagating IWV plumes over

time, making it possible to reasonably assess the extent

and location of features in the data. Combining the data

from the different satellites eliminates gaps between the

individual swaths that would hamper application of the

ARDT-IWV.

Satellite-derived retrievals of the total precipitable

water vapor or IWV are sufficiently advanced to serve as

a reliable source for verification of the model-based

fields. The IWV can potentially be retrieved from passive

microwave observations with a high degree of accuracy

(Wentz 1997) as the relationship is more direct than for

many remotely derived quantities. Though there is lim-

ited comprehensive validation against in situ data over

the open oceans, the physically based IWV product

generated by Remote Sensing Systems (Wentz 1997;

Wentz et al. 2007) has been broadly applied in clima-

tological studies (Trenberth et al. 2005; Wentz et al.

2007; Mears et al. 2007). We have also successfully em-

ployed satellite-derived retrievals of IWV in several

observationally based AR studies, as cited in the in-

troduction. While we generated our own retrievals from

the orbital data using the Wentz (1995) optimal statis-

tical algorithm to facilitate blending of the data from the

different sensors over specific time intervals, our com-

parisons (not shown) have demonstrated very good

agreement between the RSS gridded physical product

and our product. Additionally, comparison of our IWV

product with independent estimates of the IWV from

global positioning system radio occultation (GPSRO)

soundings from the Constellation Observing System for

Meteorology, Ionosphere, and Climate (COSMIC) mis-

sion showed strong agreement with zero mean bias and

a 3-mm RMS difference (Wick et al. 2008). Such dif-

ferences are small relative to the variations across ARs

and, in any event, any biases should not hinder accurate

representation of the AR spatial structure.

3. Methodology

Our approach to evaluating the ability of the opera-

tional forecast models to predict and represent the IWV

signature of ARs employs a feature-based verification

methodology to directly compare the characteristics of

the IWV plumes in the model fields against those in the

satellite-derived observations. The key questions we

seek to answer include the following:

d Are the occurrence and timing of ARs accurately

predicted in current models?
d How accurately is the width of the features repro-

duced given the available resolution?
d Are there any biases in the modeled strength of the

ARs as represented by the IWV content along its axis?
d How well is the occurrence and location of landfall of

ARs forecast along the west coast of North America?

We particularly examine how these results are affected

by the model resolution and forecast lead time.

To address these goals, we apply the ARDT-IWV

developed by Wick et al. (2013) to identify and charac-

terize ARs in individual fields of IWV from both the

forecast models and corresponding satellite observa-

tions. The suitability of the procedure for this task was

demonstrated by its success in replicating a visually de-

rived climatology of landfalling AR events as shown in

Wick et al. (2013). The comparison requires consistent

processing of both the model and satellite data. The
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ARDT-IWV (hereafter simply ARDT) is run indepen-

dently for each available model-based and satellite-

derived IWV field. The primary outputs include the

number of ARs present in the scene, and, for each AR,

the coordinates of the identified AR axis, corresponding

IWV values, and multiple estimates of the AR width at

each location. Width values are derived for where the

IWV first falls below thresholds at 2.0, 2.33, and 2.67 cm,

and drops to 0.37 times (the e-folding scale) the differ-

ence between the peak and mean values along the AR

cross section. Additionally, a flag indicates if the de-

tected AR makes contact with a continental landmass

somewhere along its extent. The corresponding model-

and satellite-based results are grouped together and

evaluated for each model and distinct lead time. Any

forecast–observation field pair where the satellite-derived

IWV field has significant gaps due to data outages or

overlap of orbits from the different satellites is discarded

because of the potential for the gaps to compromise the

automated AR detection.

Comparison of the model- and satellite-based results

considered both the accurate prediction of occurrence

and the specific characteristics of the ARs. With respect

to AR occurrence, the key parameter considered is the

number of days with at least one AR present over the

domain (in both the observational and forecast fields).

This quantity is easier to assess and subject to less un-

certainty than the number of distinct ARs but gives

much the same information. Specific characteristics such

as the width, position, and IWV content along the AR

axis were compared for days with exactly one AR

detected in both the forecast and corresponding satellite-

derived field. This restriction was imposed to minimize

the potential comparison of different features present in

different portions of the spatial domain. There is still the

slight possibility that single different, unrelated fea-

tures could be detected in the corresponding model and

satellite-based fields, but the fields were generally similar.

Width and core IWV content were characterized both

as averages over the entire length of the AR and for

distinct latitudinal bands. The width estimates used in the

comparisons were the minimum width computed relative

to the 2.0-, 2.33-, and 2.67-cm IWV thresholds. This value

enables a good comparison of the AR width for the

different models as it allows for slight variations in the

background IWV values. Further comparisons of results

were then performed for the specific case of landfalling

events. For all quantities, the results were stratified by

forecast lead time and the performance of the different

models compared.

The ability of the models to reproduce the number of

days with ARs present was evaluated in terms of tradi-

tional forecast diagnostics (e.g., Wilks 2006) including

threat score (TS), probability of detection (POD), and

false alarm ratio (FAR). The threat score (or critical

success index) is defined as the number of cases where an

AR was identified both in the forecast field and in the

satellite observations divided by the number of occa-

sions on which an AR was either forecast and/or ob-

served. The POD represents the fraction of those cases

of an observed AR where it was accurately forecast to

occur. The FAR is defined as the fraction of forecast AR

cases that did not occur in the observations. The repre-

sentation of the width, IWV content, and location were

evaluated simply in terms of bias, standard deviation,

and RMS error.

The geographic domain for the study is 158–558N, 1108–
1608W. This domain corresponds to that of the climato-

logical analysis of landfalling ARs conducted by Neiman

et al. (2008a) and encompasses those events contributing

to precipitation along the west coast of North America.

The domain is also that for which the accurate perfor-

mance of the ARDT was validated in Wick et al. (2013).

Slightly different preprocessing is applied to the sat-

ellite andmodel data because of their inherent difference

in smoothness. A median filter is applied to the input

IWV field as part of the ARDT to facilitate identification

of continuous features. Because of the higher noise level

in actual satellite observations, a 73 7 window is used for

satellite datawhile a 33 3 window is applied to themodel

fields.

To minimize apparent errors in the forecast AR

widths and other quantities due to the coarser resolution

of the model fields compared to the observations, pri-

mary analyses of the satellite data were conducted on

the data mapped onto a 0.58 grid corresponding to the

finest-resolution model field. Because this still placed

the 18-resolution models at a disadvantage, the analyses

were also repeated for the observations gridded at 18
resolution. Internal to the function of the ARDT, all

input fields at a resolution coarser than 0.58 are re-

gridded at 0.58 resolution. Bilinear interpolation is used

in this process to smoothly fill the grid cells between the

original coarser grid-cell centers.

The overall nature of the comparison is illustrated in

Fig. 1 for a landfalling AR on 7 January 2009. This AR

produced record rains and flooding across parts of the

Pacific Northwest and was responsible for compromis-

ing the integrity of Washington’s Howard Hanson Dam

on the Green River (e.g., Mastin et al. 2010; White et al.

2012). The observed IWV field from the satellite-derived

data is shown on top along with the 1-, 3-, and 7-day

control forecast fields from each of the five ensemble

prediction systems considered. Within each panel, the

objectively determined axis of the AR is shown with the

overplotted gray circles. Each of the forecast models
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FIG. 1. Visual illustration comparing the modeled representation of an AR observed on 7 Jan 2009. (top) The satellite-observed IWV

with the detected AR axis indicated with the gray circles. (bottom) The (left) 1-day, (middle) 3-day, and (right) 7-day forecasts all valid at

the time of the observations. Separate rows correspond to the different ensemble forecast systems as shown. While the AR is clearly

represented by all models at all lead times, increasing variability in the AR position and strength is observed at the longer lead times.
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clearly predicts the occurrence of an AR even out to 7

days, but the predicted position, width, orientation, and

IWV content of the AR vary notably with model and

lead time. The location of landfall, in particular, is highly

variable across models and forecast lead times. The re-

sults in the following section attempt to quantify these

differences in forecast accuracy over the three cool

seasons considered.

4. Results

Since the results of the ARDT are highly dependent

on the IWV threshold values used in detecting the ARs,

the model-based total column water outputs were first

evaluated for potential overall biases relative to the

satellite-derived IWV product. Grid-cell by grid-cell dif-

ferences in IWV content were computed and averaged

over the three cool seasons’ worth of data for each model

and forecast lead time. This comparison was performed

over a broader domain (558N–558S, 1108E–708W) en-

compassing the entire Pacific Ocean to better capture

the total variability in the IWV fields. Because of the

approach to gridding the satellite data, time differences

between the observations and forecast fields were slightly

greater in the western portion of the domain. The re-

sulting derived IWV biases are shown in Fig. 2. Results

limited to the localized study domainwere similar and are

not shown. Overall, the biases are generally small with

values typically less than 1mm. The biases are smallest

and most consistent for the ECMWF fields. The largest

biases, approaching 2mm, are observed for the UKMO

fieldswhich, as forNCEP, showa tendency for decreasing

bias with increasing lead. The CMC fields, in contrast,

show an increase in bias with increasing lead. Because the

biases were generally small and variable with forecast

lead, no bias adjustments were applied to the model

fields prior to application of the ARDT. The use of

multiple IWV thresholds within the ARDT (Wick et al.

2013) should lessen the impact of the remaining biases.

a. Prediction of occurrence

The first question addressed was how well the occur-

rence of ARs is forecast. The TS, POD, and FAR for

forecasts of days with at least one AR present within the

analysis domain averaged over the three cool seasons

analyzed are plotted in Fig. 3 as a function of forecast

lead time. Overall, the results are very positive, dem-

onstrating that the occurrence of ARs is generally well

forecast by each model even out to 10-day lead time.

The probability of detecting ARs is greater than 84%

and false alarms are less than 12% at all lead times.

While model performance is generally similar, the TS

and POD values are typically highest for ECMWF and

lowest forNCEP. The high PODvalues for ECMWFare

accompanied by a slightly increased FAR, though the

difference relative to the other models may not be sig-

nificant. Not surprisingly, the model performance does

tend to degrade with increasing lead time but the deg-

radation is not that great. One exception to this ten-

dency is observed for the UKMO results moving from

the analysis out to 3-day lead time. The poorer perfor-

mance for the analysis and 1-day lead results is likely

related to the increased IWV bias at these times ob-

served in Fig. 2, which leads to IWV features in the

model data that are too wide to be classified as ARs.

We next looked specifically at the accuracy of pre-

dictions of the occurrence of those ARs making landfall

along the west coast of North America within the anal-

ysis domain. This approximately corresponds to latitudes

from 258 to 558N. The TS, POD, and FAR for these

comparisons are shown in Fig. 4. The accuracy of pre-

dictions of days with a landfalling AR are significantly

poorer than those for overall AR occurrence, and the

decrease in performance of the models with increasing

lead time is larger. Threat scores are decreased (relative

to that for overallARoccurrence) by values ranging from

0.25 at 1-day lead to over 0.4 at 10-day lead. While the

probability of detection is still near 80% at 1-day lead,

values decrease to near just 60% for 10-day forecasts.

Similarly, false alarms increase from ;27% at 1 day to

near 45% for 10-day forecasts. The relative performance

of the models remains generally similar. While small

differences in time should not significantly impact the

overall occurrence statistics, they could potentially have

an effect on the values for landfall. If anything, however,

there is a slight tendency for the models to overpredict

landfall, and the nature of the time offset is such that the

observations are slightly later than the forecasts, giving

the observed ARs more time to make landfall.

FIG. 2. Bias in the modeled IWV fields as a function of forecast

lead time computed relative to the satellite-derived observations

averaged over the three cool seasons of data for a domain en-

compassing the entire Pacific Ocean. Different models are re-

flected by the different colors and symbols.
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If the criterion for accurate prediction of AR landfall

occurrence is relaxed to occurrence within a 2-day

window rather than on the same day, the behavior of the

TS, POD, and FAR shown in Fig. 5 is obtained. At longer

lead times, knowing that an AR would make landfall

within a couple of days can be almost as valuable as

knowing the exact day. The scores are all improved

markedly with a threat score and a probability of detection

at 10-day lead of ;0.58 and 0.73–0.78, respectively.

While the scores are still degraded relative to overall

occurrence, the results suggest that the landfall forecasts

can still be very valuable for planning purposes.

The ability of the models to reproduce the seasonal

and latitudinal distributions of the occurrence of land-

falling ARs is presented in Fig. 6. The frequency of oc-

currence of landfalling ARs was computed for individual

108 bins of latitude and 2-month seasonal blocks. The

model results are shown for 7-day forecasts. The largest

fraction of days with observed landfalling ARs occur in

the early season (October–November) along the most

FIG. 3. Forecast verification statistics reflecting the ability of the

models to predict the overall occurrence of at least one AR

somewhere within the analysis domain on a given day. Quantities

include (a) TS, (b) POD, and (c) FAR. The scores were computed

using all three cool seasons of observations and are plotted as

a function of forecast lead time.

FIG. 4. As in Fig. 3, but for the prediction of at least one landfalling

AR within the domain on a given day.
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northern part of the coast. In this early part of the season

the number of days with landfalling ARs decreases

moving south along the coast with very few events along

the southernmost part of the coast. These tendencies are

captured by all the models except CMC, which predicts

the largest fraction of landfalling ARs in the early season

to occur in themiddle coast region. All models reproduce

the observed tendency for the largest percentage of days

with landfalling ARs in the southernmost coast to occur

in the late part of the cool season. The increase in the

number of ARs in the south later in the cool season is

consistentwith the climatological pattern of an expanding

circumpolar vortex during the winter with a resulting

more southern storm track with time. Considering land-

falling ARs over all seasons, the models predict a peak in

the number of landfalls in the central part of the coast

while observations suggest that the north and central bins

have more similar numbers of landfalling ARs. The

models generally underpredict landfall in the north part

of the coast while overpredicting landfall in the center

and south coast. Combining all latitude bands, the

number of days with observed landfalling ARs is

greatest in the early season and decreases as the season

progresses. This is reproduced by all models except

NCEP, which has nearly equal numbers in December–

January and February–March.

A total number of 455 days with suitable gap-free

satellite observations were available over the three cool

seasons. A landfalling AR was observed somewhere

along the coast on 208 (or 46%) of those days. In con-

trast, the presence of at least one AR anywhere in the

analysis domain was detected in the satellite observations

on a remarkable 87% of those days. The occurrence of

ARs is clearly very common over the open ocean.

b. IWV content and width

The remaining analyses examine the ability of the

different ensemble prediction systems to reproduce

specific characteristics of the ARs and target the ques-

tions related to the accuracy of forecast strength, width,

and position of the ARs. An initial broadmeasure of the

models’ ability to capture the position of ARs can be ob-

tained by computing a simple pattern correlation between

the satellite-derived IWVfields and each individual model

forecast. Comparing the gridpoint by gridpoint IWV

values over the entire northeastern Pacific domain for

all available scenes over the three cool seasons analyzed

yields the correlation coefficients shown in Fig. 7. The

results illustrate excellent short-term performance but

a steady decrease in the skill of the forecast models as

the lead time increases. While over 80% of the observed

variance in IWV is reproduced in the models’ analysis

and 1-day forecast fields, the percentage decreases to

less than 35% at 10-day lead. In this comparison the

models all perform very similarly with the exception of

CMC, which possesses lower correlation coefficients,

particularly as the lead time increases. The lack of ab-

solute coincidence in time between the satellite obser-

vations and model fields could be responsible for a slight

degradation in the absolute correlation values. Limiting the

analysis to only those days where an AR was found to be

present reduced the correlations only by about 0.01 since

ARs were detected on such a large fraction of the days.

To address whether the models possess any bias in the

forecast strength of ARs as represented by the IWV

FIG. 5. As in Fig. 4, but for the prediction of landfall within a 2-day

window rather than for 1 day.
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content along the AR axis, we compared both average

values along different portions of the AR and peak

values near landfall. Forecast minus observed differences

were computed for each AR and then averaged. The

apparent bias in the IWV content along the axis of the

AR averaged over the entire length of the detectedAR is

presented as a function of forecast lead time in Fig. 8a.

The corresponding average observed value of the core

IWV content is 3.1 cm. The results suggest a slight overall

moist bias (up to;6%) along the AR axis for each of the

models. The biases here are all typically greater than the

average overall bias in the IWV fields presented in Fig. 2,

suggesting a slight overestimate of the strength of the

ARs. With the exception of the CMC and JMA results,

which suggest an increase in the bias with increasing

forecast lead, the bias is largely independent of the

forecast lead time. The average results shown here are

largely consistent with those obtained for core IWV

values within individual latitude bands (not shown).

The corresponding comparison of the peak IWVvalues

in the vicinity of landfall is shown in Fig. 8b. The peak

values were taken as the maximum IWV content along

the detected AR axis within a distance of 100–200km

offshore from the coastline. Observed IWV values within

100km of the coast are subject to potential sidelobe

contamination in the microwave satellite data resulting

from the proximity of the bright land surface. Compari-

sons were only performed for those cases where a land-

fallingARwas detected in both the observed and forecast

fields. The average observed peak IWV value corre-

sponding to the computed biases is 2.8 cm. Visually

subtracting the overall bias in the IWV fields from Fig. 2

results in relatively consistent biases near or just below

0 cm for all the models. This suggests little systematic

bias in the peak IWV values near landfall in contrast to

the overall moist bias noted above. There again is no

significant consistent trend for this bias to change with

forecast lead. If observations within 100 km of the coast

are included, there is an increased suggestion of a dry

bias in the models. While this could be a result of the

FIG. 6. Occurrence of observed andmodeled landfallingARs stratified by latitude of landfall

and season. Model results are shown for 7-day forecasts. The heights of the bars represent the

numbers of days with landfalling ARs detected in the individual bins. A total of 455 days were

included in the analysis. Individual columns reflect the satellite observations and different

models as shown. Time periods are October–November (blue), December–January (red), and

February–March (green).

FIG. 7. Correlation between modeled and observed IWV fields

over the entire analysis domain computed on a grid-cell by grid-cell

basis for data mapped onto a common grid. The correlation co-

efficients were computed using all collocated data over the three

cool seasons analyzed. Results were virtually identical if the anal-

ysis was restricted to days with detected ARs.
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models not capturing convergence of the IWV near

landfall, this influence cannot be adequately distin-

guished from the possibility of a moist bias in the ob-

servations close to land.

The reduced average peak IWV value near landfall

relative to the overall average IWV value reflects the fact

that the largest core IWV values are typically observed in

the more southern ‘‘upstream’’ region of an AR in areas

of greater background water vapor content. Enhance-

ment of the core IWVvalue can occur near landfall due to

convergence and orographic influences but this en-

hancement is typically smaller than the variation over the

entire length of the AR.

We next considered the question of how well the

models reproduced theARwidth, particularly given their

differences in resolution. As for the IWV content along

theAR axis, the bias in the estimatedARwidth averaged

over the entire length of the AR is shown in Fig. 9a. The

average observed width based on the selected minimum

threshold approach is 283 km and the biases can be in-

terpreted relative to this value. The results demonstrate

the superior performance of the ECMWF predictions

and a significant overestimate of the width by all other

models. The biases clearly reflect the impact of model

resolution as the models with near 18 resolution spread

the signature of the AR over a larger region than the

ECMWFmodel at 0.58 resolution. It is important to note

that the average AR widths involved in this comparison

were on the order of a few degrees so that the coarser-

resolutionmodels are still able to resolve the features.An

additional comparison (not shown) of the ECMWF re-

sults against width estimates derived from satellite obser-

vations gridded at 0.258 resolution showed a positive bias

on the order of 30km, suggesting there is still spreading of

the features in 0.58-resolution models. Regridding the

FIG. 8. Bias in the modeled AR strength as represented by the

IWV content along the axis of the AR relative to satellite-derived

observations computed both (a) for an average over the entire

length of theARand (b) for themaximumvalue along the detected

AR axis between 100 and 200 km of the coast. The corresponding

average values for the observed IWV contents are annotated. The

error bars represent 61 standard deviation of the mean to reflect

uncertainty in themean value. The horizontal position of the points

has been offset slightly to avoid overlap of the error bars.

FIG. 9. Bias in the forecast AR width relative to satellite-derived

observations computed both (a) for an average over the entire

length of the AR and (b) for an average within 100–200km off-

shore of the coast. Thewidth estimate usedwas theminimumwidth

computed relative to the 2.0-, 2.33-, and 2.67-cm IWV thresholds.

The corresponding average values for the observed width are an-

notated. The error bars represent 61 standard deviation of the

mean to reflect uncertainty in the mean value. The horizontal po-

sition of the points has been offset slightly to avoid overlap of the

error bars.
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ECMWF results at 18 resolution resulted in biases of

similar order to the other 18-resolution models. The

models all (including the ECMWF results relative to the

observations gridded at 0.258 resolution) exhibit a general
tendency for the width of the features to be over-

estimated by a larger amount at longer forecast lead

times, but it is unclear if the increase in bias is statistically

significant. The variability in the differences of the width

estimates relative to the observations is also observed to

increasewith increasing lead as reflected by the size of the

error bars.

The results constrained to differences inwidth between

100 and 200km offshore of the coastline for landfalling

ARs are shown in Fig. 9b. The corresponding average

observed width is 262km. The biases again reflect the

difference in model resolution with greater spreading of

the AR features in the models with near 18 resolution.
Near the coastline, however, the apparent positive biases

are slightly reduced and the ECMWF results now

demonstrate a small negative bias. Visual analysis of the

satellite observations suggests some widening of ARs as

they approach large-scale terrain and the results here

might indicate that themodels do not capture this change.

There is no significant tendency for changes in width bias

at landfall with increasing lead time but the variability in

the differences again increases. The variability in the

width estimates is notably larger near landfall than for the

overall average.

The peak IWV content and average width within 100–

200kmoffshore of the coastline for landfallingARs (with

no model–observed coincidence requirement) were then

stratified and compared as a function of landfall latitude

and season as for the frequency of occurrence. The ob-

servations suggested no clear dependence of the width at

landfall with latitude, so the results are presented only as

a function of month of occurrence in Fig. 10. The model-

based results are shown for a forecast lead time of 7 days.

This leadwas selected sincemodel differences are greater

at longer leads and this is the longest lead for which data

from all five models are available. The observed IWV

content along the AR axis (Fig. 10a) shows a clear de-

crease as the cool season progresses and this tendency is

captured by all the models. The relative performance of

the differentmodelswith respect to the core IWVcontent

shows no apparent changewithmonth. The observed and

modeled AR widths (Fig. 10b) show no clear seasonal

trend but the model overestimates of width appear

greater in the middle and later portions of the season.

For the 18-resolution models the average AR width is

generally close to the observations in October–November

but then are overestimated in the later months, especially

December–January. It is unclear at present if there is any

physical reason to expect this behavior.

While selected to facilitate comparison of observed

and modeled results, the AR width computed as the

minimumwidth relative to the different IWV thresholds

as displayed in Fig. 10 is not necessarily the most ap-

propriate value for physical interpretation. AR widths

of approximately 250–300 km obtained via this method

are generally narrower than those discussed in previous

publications (e.g., Ralph et al. 2004) relative to a single

threshold of 2 cm. For averages within 100–200 km off-

shore of the coastline for observed landfalling ARs, the

average width computed relative to the 2-cm threshold

is 510 km. This contrasts with a corresponding 262 km

for the minimum width relative to the multiple IWV

thresholds. Different width estimates should be consid-

ered for AR climatological studies.

c. Position

Finally, we considered the question of how well the

positions of ARs are forecast, looking specifically at the

predicted location of landfall. Unique data points were

considered for every day an AR contacted the coastline,

meaning that a single AR could contribute multiple

FIG. 10. Mean observed and modeled (a) peak IWV content

along the AR axis and (b) average width, within 100–200km off-

shore of the coastline for landfalling ARs stratified by season of

occurrence. Values were computed independently over all ARs

detected within each separate data type. No coincidence in date

was required between the observed and forecast results. Modeled

results are shown for forecasts with 7-day lead.
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times over the course of its lifetime. The errors in forecast

landfall location are presented in terms of an overall

RMS error in landfall position and a latitudinal bias in

Fig. 11. The detected landfall location is taken as the

point where the detected AR axis makes contact with the

coastline. Ifmultiple contiguous axis points were found to

touch the coast, the position was taken as the median of

these values. The derived RMS error in landfall position

is seen to increase significantly with forecast lead, growing

from values near 200km to more than 800km at 10-day

lead. No single model clearly performs best, though the

NCEP model performs reasonably well in this com-

parison. Interestingly, these estimated position errors are

generally larger than the National Hurricane Center of-

ficial annual average track errors for tropical storms and

hurricanes, which, in 2011, varied from;200 km at 3-day

lead to;400km at 5-day lead (see http://www.nhc.noaa.

gov/verification/verify5.shtml), while largely consistent

(after day 1) with extratropical cyclone position errors

determined by Froude (2010).

While difficult to directly quantify, it is important to

consider the uncertainties contributing to the derived

landfall position errors. First, errors associated with the

time of landfall cannot be resolved in this analysis and

could be a component of the apparent spatial biases.

Assuming a potential time difference of ;2 h between

the observations and forecast valid times would corre-

spond to a spatial offset of;100 km, as noted previously.

Additionally, the dilation of the AR axis (seeWick et al.

2013) to ensure proper continuity detection and landfall

identification leads to potential spreading of the axis po-

sition by one or twogrid cells, adding additional variability

on the order of ;50km. Coupled with the fact that the

landfall could be naturally spread over a range of lati-

tudes, it is challenging to determine a precise landfall

location for comparison. Considering these factors, the

landfall position errors are not inconsistent with hurri-

cane track forecast errors. Even without allowing for all

the possible uncertainties, the errors at 1-day lead agree

with forecaster experience of errors in predictions of

frontal passage along the west coast (D. Reynolds 2013,

personal communication).

The errors in position generally correspond to a

southerly bias in landfall location, except for ECMWF

and UKMO, which exhibit little mean bias out to about

3-day forecasts. The results suggest an increase in this

southerly bias with increasing lead time for each of the

models. Any potential negative or dry bias in core IWV

content near landfall as suggested previously does not

appear to be related to a bias in landfall location. A

southerly bias in landfall location would be expected to

correspond to slightly moister IWV values due to mean

IWV distributions. A delay in the time of the observa-

tions relative to the forecasts could contribute to an

apparent southerly bias.

Considering positional uncertainty in the open ocean,

we also examined any longitudinal bias in the position

within specific latitudinal bands. The results were rather

noisy, revealing little systematic behavior, but the agree-

ment was typically within 28. Differences in orientation

angle were also quite variable, yielding little additional

insight into the relative model performance. For both

quantities (not shown), the variability (as reflected by the

standard deviations of the mean) did increase notably

with increasing forecast lead time.

5. Discussion and conclusions

The ability of ensemble forecast systems from five

leading forecasting centers to accurately predict and

reproduce the water vapor signature of ARs was eval-

uated through feature-based comparisons between their

IWVfields and satellite-derived observations fromSSM/I

and SSM/IS. The assessment focused on the models’

representation of the occurrence of AR events, the AR

FIG. 11. Estimates of error in forecast AR landfall location as

a function of lead time. (top) The total RMS error (km) in the

detected landfall location along the west coast. (bottom) The bias

in the latitude of the detected landfall relative to the satellite ob-

servations. The error bars represent 61 standard deviation of the

mean to reflect uncertainty in the mean value.
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strength as represented by the IWV content along the

AR axis, the AR width, and the position at landfall. The

study was performed for a region of the northeast Pacific

Ocean bordering the coast of North America over three

cool seasons from 2008–09 to 2010–11. The overall pres-

ence of ARs was well forecast, even out to 10-day lead

times, but the forecasts for landfall occurrence were less

accurate. Significant errors were observed in the forecast

position of landfall, particularly at longer lead times.

Comparisons were based on ‘‘AR days’’ rather than

distinct ARs. The prediction of occurrence of ARs was

evaluated in terms of the number of days where at least

one AR was found to be present. The direct comparison

of AR characteristics was performed on a daily basis for

those cases where exactly one AR was detected in both

the observed and forecast IWV fields. Landfall occur-

rence was also evaluated using a relaxed 2-day window.

Further enhancements to application of the feature de-

tection technique are required to perform analyses on

distinct ARs. While comparison of the landfall statistics

between the 1- and 2-day arrival windows provides some

insight into time errors in the forecasts, the lack of iso-

lation of distinct ARs prevents us from formally assessing

model uncertainties related to leads or lags in time of

landfall or duration of occurrence.

Model resolution was found to be important for ac-

curate representation of detailedAR characteristics, but

realisticARswere still predicted by the coarser-resolution

models. Indeed, Dettinger (2011) has also shown the

presence ofARs in climatemodels.While the performance

for each of the different models was largely similar, the

ECMWF forecasts benefited in several tests from the

model’s finer 0.58 resolution. The difference between

models was greatest for the apparent width of the ARs

with all models except ECMWF significantly over-

estimating the AR width, both overall and near landfall,

due to their coarser resolution. While comparisons with

observations gridded at the same resolution as ECMWF

suggested small biases in forecast AR width, compari-

sons with observations at their native resolution sug-

gested that there may still be some spreading in the

width of features in the ECMWF forecasts. The overall

degradation in forecast skill with increasing lead time

was similar for all models for all quantities evaluated,

with each model generally maintaining its same perfor-

mance relative to the other models. Model resolution

had less of an impact on the IWV content along the AR

axis, with all models demonstrating a moist bias for av-

erages over the entire length of the AR.

This work represents the first detailed diagnostic of

AR predictability on the U.S. west coast and the results

have significant implications for forecasting of extreme

precipitation events in that region. Some results highlight

an encouraging level of predictability, such as whether

an AR will hit the West Coast within the coming week

and whether it will contain relatively large water vapor

content. Conversely, a major forecast challenge is pin-

pointing the location of landfall and the duration of AR

conditions in key watersheds. Forecasts of the location,

timing, and duration of landfall are critical to precip-

itation forecasts and the issuance of warnings. The results

at landfall also havemajor implications for forecast-based

dam operations, which typically require many days lead

time. Although position errors decrease as landfall ap-

proaches, errors on the order of hundreds of kilometers

pose a serious problem for water managers and flood

forecasters whose watersheds are smaller than that error.

Improvements in the model predictions of the location

(and timing) of AR landfall are desirable for improved

warnings. The identified forecast biases offer potential for

future work to diagnose their causes and yet also hold

promise for forecasters to consider the results directly as

they prepare their human-in-the-loop forecasts. NOAA’s

Hydrometeorology Testbed (HMT; hmt.noaa.gov) and

its major partners are pursuing several avenues of re-

search and related actions aimed at improving both our

understanding of ARs as well as their monitoring and

prediction.

Given that ARs are intimately connected with the

dynamics of midlatitude cyclones, one would expect a

relationship between the accuracy of forecasts of ARs

and extratropical cyclones. In fact, the landfalling AR

position errors derived here broadly agree with position

errors of extratropical cyclones in ensemble prediction

system forecasts found by Froude (2010). While slightly

larger, the landfalling position errors are also not in-

consistent with current hurricane track forecast errors.

Increased errors in landfalling AR position relative to

tropical cyclones could be associated with contortions

and bending occurring during frontal passage over the

coast and limitations in the models’ ability to treat

lower boundary phenomena.

The results are clearly predicated on the performance

of the ARDT.While the performance of this automated

tool has been found to be very good and the direct

comparisons performed here are the precise application

for which it was designed, there are clearly uncertainties

related to its function. We have attempted to document

and limit these as much as possible, but it is important to

emphasize that any manual approach is also subjective in

nature.

The implications for assessing AR prediction are also

affected by utilizing IWV patterns rather than water

vapor transport. A visual comparison of IWV and water

vapor transport patterns in real-time forecasts, however,

supports past work suggesting that IWV generally
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reflects the existence of ARs quite well. The strength is

less well characterized and a relatively small percentage

of the ARs identified at the lowest IWV thresholds fail

to have a corresponding well-defined IVT signature.

Where there is a water vapor transport signature, the

ARs at low IWV thresholds also often correspond to

more isolated regions of transport rather than major

transport corridors extending deeper into the tropics.

Though additional comparisons with other methods

would be valuable, the comparisons with cyclone posi-

tion errors are encouraging, and this work provides

a baseline for the evaluation of future AR predictions.

Conducting a similar study of the skill of existing climate

models to reproduceARs would also be very valuable to

help determine to what degree projections of changing

AR activity in a changing climate might be reliable.
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