FIRO 2017 Field Campaign:
Observations of landfalling
atmospheric rivers in Northern
California during early 2017

Anna Wilson, Reuben Demirdjian, Brian Kawzenuk, Marty Ralph FIRO Science Task Group Workshop 30 May 2017

FIRO 2017 - Background

FIRO 2017 - Summary

- Field deployment 6 Jan 30 Mar 2017
- Launch frequency during AR conditions: every 3 hours, increasing to every 1.5 hours during storm peak
- 164 balloons launched from Bodega Bay over 13 events
- 111 balloons launched from Ukiah over 8 events
- NRT radiosonde profiles provided to NWS at WFOs Monterey and Eureka – working with WCMs and SOOs
- Continuous data collection from ground instruments as of mid-Jan present
- Outreach opportunities: SR Press
 Democrat, Potter Valley Elementary

FIRO 2017 – Observed Events BBY(UKI)

Start (UTC)	End (UTC)	Duration (hrs)	Max IWV (cm)	Max IVT (kg/m/s)	BBY Pcp (mm)	CZC Pcp (mm)
7 Jan 1900	9 Jan 0600	35	3.74	1101.9	56.9	125.5
10 Jan 0000	11 Jan 0300	27	2.99	788.6	41.1	153.7
18 Jan 0600	19 Jan 0600	24	2.95	817.6	30.5	63.5
20 Jan 0600	20 Jan 1400	8	2.18	416.1	18.8	25.4
22 Jan 0300	22 Jan 1200	9 (0)	2.27 (1.87)	616 (444.8)	24.1	35.6
2 Feb 0600	4 Feb 0600	48 (15 cont.)	2.62 (2.37)	489 (413.7)	60.7	76.7
6 Feb 0000	8 Feb 0300	51 (18 cont.)	3.79 (3.29)	1183.1 (997.8)	28.7	97.5
8 Feb 0300	10 Feb 0000	45 (39 cont.)	3.68 (3.33)	902.4 (740)	55.4	73.7
15 Feb 2100	16 Feb 1200	15 (15)	3.2 (3.2)	910.5 (875.8)	22.1	43.2
17 Feb 1200	17 Feb 1800	8 (6)	2.7 (2.0)	550.9 (310.5)	25.9	37.3
19 Feb 1500	21 Feb 0300	36 (18 cont)	2.9 (2.6)	706.1 (571.6)	34.3	99.3
20 Mar 1500	21 Mar 1300	22 (18 cont)	2.93 (2.7)	484.8 (473.5)	10.7	47.2

IVT – BBY vs. UKI

Maximum Water Vapor Flux – BBY vs. UKI

Water Vapor Flux = Specific Humidity (g/kg) * Wind Speed (m/s)

BBY and UKI Radiosondes - Jan - Mar 2017

Maximum water vapor flux observed by BBY radiosondes was on average 22% higher than max flux observed by UKI

radiosondes

JKI Maximum Water Vapor Flux (g/kg*m/s)

Maximum Water Vapor Flux – BBY vs. UKI

Water Vapor Flux = Specific Humidity (g/kg) * Wind Speed (m/s)

- The majority of BBY radiosondes measured the height of maximum water vapor flux to be below the controlling layer
 - BBY
 - **Below CTL** = 52 (53%)
 - In CTL = 14 (14%)
 - Above CTL = 32 (33%)
 - UKI
 - **Below CTL** = 6 (6%)
 - In CTL = 12 (12%)
 - **Above CTL** = 80 (80%)
- Max WV flux was lower at BBY than UKI in 83% of radiosondes

BBY and UKI Radiosondes - Jan - Mar 2017

*Dashed lines represent the "controlling layer" (0.75-1.25 km agl)

IWV Flux - IVT Correlations

- Controlling layer varied but still correlates well with total IVT up to ~4 km at Bodega Bay
- Computations done entirely with radiosonde data – total WV flux = IWV throughout column * winds in 500m thick controlling layer

IWV Flux – IVT Comparisons

Comparison of water vapor flux and integrated water vapor transport (IVT)

Drop and Radiosonde IWV-Flux vs IVT

 Using CW3E dropsondes and radiosondes a comparison between water vapor flux and IVT can be made

- IWV-Flux = IWV*Ave Wind (0.75–1.25 km agl)
- Ralph et al. 2013 catalog uses upslope flux threshold of 15 cm(m/s)
 - IWV-Flux = 15 cm(m/s) \sim IVT = 190 kg m⁻¹ s⁻¹
 - IWV-Flux = 25 cm(m/s) \sim IVT = 270 kg m⁻¹ s⁻¹
 - IWV-Flux = 19.91 cm(m/s) \sim IVT = 250 kg m⁻¹ s⁻¹

BBY Atmospheric River Observatory Catalog

Foundational ARO catalog methodology from Ralph et al. 2013

- Based on dropsondes and radiosondes a threshold of 19.91 cm(m/s) of total water vapor flux corresponds with IVT of 250 kg/m/s
- Many AR Detection Tools in the literature do not consider direction: what is the effect on the ARO catalog using water vapor flux as opposed to upslope water vapor flux?
- Several new catalogs were developed using an 8 hour minimum, with 1 hour below threshold ending event. Criteria used (all ≥ 2 cm Integrated Water Vapor):
 - Water Vapor Flux ≥ 15 cm(m/s)
 - Water Vapor Flux ≥ 25 cm(m/s)
 - Water Vapor Flux ≥ 20 cm(m/s)
 - Upslope Water Vapor Flux ≥ 15 cm(m/s)
 - Upslope Water Vapor Flux ≥ 25 cm(m/s)
 - Upslope Water Vapor Flux ≥ 20 cm(m/s)

Number of ARs detected (Nov 2004 – May 2017)						
Threshold/Variable	WVF	USF				
15 cm(m/s)	342	230				
25 cm(m/s)	207	110				
20 cm(m/s)	267	158				

Summary/Conclusions

- FIRO 2017 –unique dataset of high resolution observations during historic year for CA precipitation
 - Valuable for NRT uses as well as advancing research goals
 - Preliminary results show great promise for addressing relevant science questions

7 -9 Jan BBY Observations

6-8 February BBY/UKI Observations

