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Tackling key hydrologic prediction challenges

Hydrologic Forecasting: methods are a critical complement to data & models
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Forcings \ ‘ .
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Forcings
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hindccsting, ensemy:les (uncertainty), benchiaarking, real-time operations

« Since the 1970s, operational forecasting has implemented key
methods in real-time via mostly human forecaster effort.

* The biggest methodological challenges to alternatives:
« data assimilation (making the model accurate in real-time)
 model calibration — especially for ungaged areas
« optimal model parameters are dependent on model forcings



Streamflow Forecast Challenges

Challenges
b'ase‘:o/rcei:;”e"“s These are the main science challenges in
hydrologic forecasting
poor hydrologic
model (parameters, : : : :
SETTE] « automatic generation of real-time forcings
using methods & data that are consistent with
4 e e L h retrospective forcings
time vs retro
forcings « automated / objective model calibration
) < (parameter estimation)
missing or bad
hydromet data « automated downscaling and statistical
_ " calibration to improve meteorological forecasts
biased / erroneous
met. forecasts y automated hydrologic data assimilation
" residual hydrologic |  + automated streamflow post-processing
error




The Over-the-Loop Project Objectives

Build an over-the-loop system (all processes automated)
to produce short-range to seasonal ensemble flow
predictions using currently available methods

« drawing methods from HEPEX ideas and philosophy

* Provide a public demonstration of the performance of
over-the-loop forecasts for locations that are relevant to the
forecasting and water management communities

* Promote discussion about alternative forecaster roles in
a modern hydrologic prediction operations



Over-the-Loop Project Methods

 Model parameter estimation (calibration)
* |ocal (for now) optimizations using MOCOM
* NWS models during development phase; VIC, mHM, SUMMA next
e Multi-scale Parameter Regionalization (MPR-Flex; N. Mizukami)
* Consistent Retro + Real-time daily ensemble forcing analysis
 GMET; Newman et al. (2015) — ensemble forcings
 Jan 1970 to yesterday, daily 1/16™ degree, western US regions
* Afirst of its kind
* GEFS ensemble (11 member) downscaling and calibration
 GARD (Generalized Analog Regression Downscaling) tool
* NCAR Ethan Gutman and Joe Hamman contributing
* Hydrologic data assimilation
* Sequential and Non-Sequential Particle Filter methods
 Liz Clark, Bart Nijssen (UW) contributing

Research supported by the major US federal water agencies: USACE and Reclamation. Co-Lead — B. Nijssen 5



Addressing DA Challenge Ensemble Particle Filter

ensemble met. forcings =>
6000 ens. hydrologic states
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« Generate consistent hydrologic states representing uncertainties
as basis for forecast initialization



Ensemble Forcing Generation

Svnthesize ensembles Other Methodological choices:
y « Topographic lapse rates derived at each grid cell for

from POI_D’ amognt & each day vs. climatology
uncertainty using - Used serially complete (filled) station data rather than
spatially correlated only available obs vs. using only available observations

random fields (SCRFs)

observations

Final Product: 1/16t" degree, daily 1970-present, 100
members, precipitation & temperature
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Examp|e over the Colorado Headwaters Clark & Slater (2006), Newman et al. (2014, in prep)



Data Assimilation

Mimic operational
forecaster by
selecting initial
states (&
Inputs/parameters
) that agree best
with observations

Technically, this is
formulated as a
particle filter
hydrological data
assimilation
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Project Methods (cont.)

* Model parameter estimation
* |ocal (for now) optimations using MOCOM
* NWS models (Snow17, Sacramento) during development phase
» working to link with MPR for next phase of project (N. Mizukami)
Consistent Retro + Real-time daily ensemble forcing analysis
 GMET; Newman et al. (2015) — earlier talk this session
e 1970 Jan 1 to yesterday, 1/16" degree, western US regions
GEFS ensemble (11 member) downscaling and calibration
 GARD (Generalized Analog Regression Downscaling) tool
* Ethan Gutman with Joe Hamman contributing
Hydrologic data assimilation
* Sequential and Non-Sequential Particle Filter methods
e Liz Clark and Bart Nijssen (UW), Andy Wood
Streamflow post-processing
 Comparing 6-8 methods — Pablo Mendoza (NCAR)

Research supported by the major US federal water agencies: USACE and Reclamation. Co-Lead - B. Nijssen °



Post-processing is also critical

« reduces residual uncertainty after other parts of the process
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contribution by Pablo Mendoza

Processor Require consistent hindcasts to implement

Research supported by the major US federal water agencies: USACE and Reclamation. Co-Leads — B. Nijssen 10



Real-Time System Implementation

The SHARP system is now running at NCAR to generate real time short and
seasonal range forecasts for a number of pilot case study basins

System for Hydromet Analysis Research and Prediction (SHARP) sample real-time
an agile effort supporting ensembles, hindcasting, benchmarking, and development workflow web monitor

SHARP System Status Report

Updated: Tue Dec 13 15:13:57 UTC 2016

Gridded Ensemble Meteorology Tool (GMET) ICAR, GARD, Statistical Methods ;Z?_ghm . f::;'fggd (1::[1": lg';ed —
get_nwec 14:00:01 14:05:17
get_gefs pending pending
get_cfsr 14:00:01 14:02:13
get_flow 14:00:01 14:01:03
reformat_ghend 14:16:36 14:33:58
reformat_nwecec 14:33:59 14:34:12

SCE, MOCDM, MPR NS, VIC, SUMBAA enkF [SWE), PF (streamflow) QC_stn_data 14:34:12 14:38:30
fill_stn_data_pass1 14:38:31 15:13:56
fill_stn_data_pass2 15:13:56 pending
fill_stn_data_pass3 ndin; endin

mikmce deg Uikl Lobmann ﬁ]l_sm_damﬁm ﬁmmz Eending

running on open source gen_ens pending  pending
eg, p\rthon, R : : . : erid2poly pending peﬂd%ng
blend, quantile regression, quantile mapping make_nws_forc pending pending

run_nws_spinup pending pending

publically available on downscale_gefs_fcst pending  pending

downscale_gefs fest_regr pending pending
reformat_gard_output pending pending
reformat_gard_output_regr pending pending
met_forecast_grid2poly  pending pending

GitHub data & graphics (timeseries, maps, verification,
process diagnostic)

ecFlow com po nent CDIJ[J'EF make_nws_met_forecast pending pending
. run_nws_gefs_fest pending pending

USACE, Reclamation, USGS, plot_stn_data_map pending pending

HEPEX, Private plot_mr_fest pending pending

ecFlow -- https://software.ecmwf.int/wiki/display/ECFLOW/



Focus on case study basin study sites

Meteorological Stations
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Initial pilot domain was the Pacific Northwest

with test basins selected out of interest for
water management purposes.

A broader US selection of basins was also
used for evaluating modeling and seasonal
prediction methods.

@ waler resources Case
study basins {Newman
et al., HESS, 2015)

O pllot forecast basins

-130 -120 -110 -100 80 &0 -T0
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The models used initially have been the NWS
lumped (Snow17/Sac/UH) and VIC run at a
daily timestep. A daily timestep is too coarse
for flows in some of the California basins.



Putting it together

» objective model calibration
« ensemble forcings

« particle filter DA

e post-processing

* hindcasting

Figure
(top) Ensemble-initialized GEFS-based
flow forecast ensembles

(middle) 5 highest weighted ICs and
forecasts

(bottom) same 5 ICs blended via LB

flowicts)

Hungry Horse Reservoir Inflows (MT)
Init Date: 20130503
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Real-time prediction example UCAR

 Howard Hanson Reservoir Inflow (WA)
« 7 day lead flow predictions made real-time

Streamflow forecasts for Howard Hanson Reservoir Inflow WA (HHDW1)
Initialized on Mar 02 2017
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Real-time prediction example

Streamflow forecasts for Howard Hanson Reservoir Inflow WA (HHDW1)
Initialized on Mar 03 2017
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Real-time prediction example

Streamflow forecasts for Howard Hanson Reservoir Inflow WA (HHDW1)
Initialized on Mar 04 2017
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Real-time prediction example UCAR

Streamflow forecasts for Howard Hanson Reservoir Inflow WA (HHDW1)
Initialized on Mar 05 2017
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Real-time prediction example UCAR

Streamflow forecasts for Howard Hanson Reservoir Inflow WA (HHDW1)
Initialized on Mar 07 2017
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Real-time prediction example UCAR

Streamflow forecasts for Howard Hanson Reservoir Inflow WA (HHDW1)
Initialized on Mar 08 2017
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Real-time prediction example

Streamflow forecasts for Howard Hanson Reservoir Inflow WA (HHDW1)
Initialized on Mar 09 2017
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Real-time prediction example

Streamflow forecasts for Howard Hanson Reservoir Inflow WA (HHDW1)
Initialized on Mar 10 2017
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Real-time prediction example UCAR

Streamflow forecasts for Howard Hanson Reservoir Inflow WA (HHDW1)
Initialized on Mar 12 2017
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Real-time prediction example

Streamflow forecasts for Howard Hanson Reservoir Inflow WA (HHDW1)
Initialized on Mar 13 2017
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Real-time prediction example

Streamflow forecasts for Howard Hanson Reservoir Inflow WA (HHDW1)
Initialized on Mar 14 2017
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Real-time prediction example UCAR

Streamflow forecasts for Howard Hanson Reservoir Inflow WA (HHDW1)
Initialized on Mar 15 2017
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Real-time prediction example UCAR

Streamflow forecasts for Howard Hanson Reservoir Inflow WA (HHDW1)
Initialized on Mar 16 2017
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Real-time prediction example UCAR

Streamflow forecasts for Howard Hanson Reservoir Inflow WA (HHDW1)
Initialized on Mar 17 2017
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Real-time prediction example

Streamflow forecasts for Howard Hanson Reservoir Inflow WA (HHDW1)
Initialized on Mar 18 2017
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Over-the-Loop forecasting — Seasonal Prediction

UCAR
Advantages " unery Horee Reservoir, MY (HEWNIS)
. benChmarkln and Method: Hierarchical ESP (HESP)
ir - g . ° ] O Observations
verifying alternative , | @ Curentforscas
methods

vaningandapoyng 01
Sfa“ggjz:ctive da?a 2 géé%égééééﬁéﬁééﬁgééﬁéééééé%é%

assimilation

Runoff [MAF]

* post-processing
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ai)
w
—
(0]
ab)
3
—

giving stakeholders hindcasts to support the training and evaluation of
decision support systems or rules

hybrid frameworks for seasonal prediction
« combining data-driven and modeling approaches to enhance skill

transparency & reproducibility to support diagnostic evaluation



Intercomparing seas. forecast methods

Hydrological
Predictability (land

Sources of predictability

-
Benchmark Methods

1. Dynamical: ensemble streamflow prediction (ESP).

2. Statistical: regression on in situ information, Initial Hydrologic

Conditions (Stat. IHC).

~

Meteorological
Predictability
(climate)

NCAR
UCAR

J/ 5.

L

( Simple post-processor

3. Bias-corrected ensemble streamflow prediction (BC-ESP).

~

Statistical methods with climate information
4. Statistical with standard climate indices (Stat. Indices).
Statistical with Partial Least Squares Regression (PLSR) over

sea surface temperature (SST) and geopotential height at 700
mb (Z700) (Stat. CESR).

Regression methods

6. Purely statistical hybrid
(Stat. Ind+IHC).

7. Purely statistical hybrid
(Stat. CFSR+IHC).

8. Hierarchical Ensemble

Streamflow Prediction
(HESP).

L v

Post-processor

9. Trace weighting scheme,

weighting ensembles based

on climate info (TWS).

Watershed + climate

information

Hybrid/hierarchical methods

rNIerging methods

10. Equal weighting of best
climate (Stat. Ind or Stat.
CFSR) with best hydrologic
(BC-ESP or Stat. IHC)
ensembles (EWE).

11.Same as 9, but based on
RMSE (RWE).

12.Same as 9, but use Bayesian
Model Averaging (EMA).

13.Same as 9, but use Quantile

Model Averaging (QMA).

Water Supply Forecasts




Intercomparison of range of methods

What added value does climate information bring? Example:
Hungry Horse

Forecast skill across methods for Apr-Jul runoff
0.6 - T - I &ﬁ]
’I‘ —

0.4 - —1%%” w __%Fi_] W J;lx' I%ﬁ J_i,

0.2

OOJ—LJ_Ll ______ ST E i _________

CRPSSjim

Oct 1 Nov 1 Dec 1 Jan 1 Feb 1 Mar 1 Apr 1
only watershed only climate Watershed + climate
-3 ESP —e— Stat.(Indices) | [ —— Stat.(Ind+IHC) —e— EWE
—-©—BC-ESP ||—+— Stat.(CFSR) |—+ Stat.(CFSR+IHC) ——RWE
~¥— Stat.(IHC) —— SICER —7— BMA
—>—TWS —5— QMA

O Early in water year: we can improve WSFs using climate info.
O Later initialization: WSFs harder to improve upon when using a calibrated model
O Hybrid approaches (include watershed and climate info) most robust overall 0




An irony
« Since this project started, the pendulum has swung toward a
different form of ‘over-the-loop’ forecasting

traditional / conceptual hyper-resolution large domain
calibrated models uncalibrated models
ensemble products mostly deterministic products
forecast community experience science gaps ‘solved’ by resolution
iIntermediate scale (~1-10 km) ~250m
RS o D" e 4 ,/
@ :U’o ;o f/
s 18 §8 / ..oo s /
| ‘:p:. S NN Y. ,;1!5?;}3':;' f
LG L 1 $ 9." o
r?go"‘...i:'.’:'lfb 8 o8 ; ® s % 8 ’;‘ .' . //
¥ A NR )
@ 3 @ @ Of o F'q{ ‘. C:
° o L l
o i .O F @ cg n".‘ " < LORAI
TR [} 2 [} s @ .. t .. > ﬂ
A Nosa 8 ,,
‘ [. 7 ® $ - ; o P /”)
& N 4 N /
> {
4 taicas ’0 Tl‘.l{f:;‘::;l.' Pale .3)
o 5 o ®eg g <
! 3 + o @ & 1876’ % < %
4 etk



This presents a new challenge

« Restoring the relevance of hydrologic prediction science
& uncertainty methods to the hyper-resolution initiatives

: - b L2109
Scaling Challenges 1980-04 |
 regional model calibration

(parameter estimation) =

* spatial obstacles in downscaling_
and post-processing

- propagation of obs info in data <« | & mass
assimilation &

46°N

« understanding appropriate
complexity of modeling
« scale
* physics
* tradeoffs =

44°N

125°wW 120°wW 115°wW 110°wW



Take-aways for FIRO Science

There are two dominant philosophies in improving prediction

 try to eliminate error in all components of the forecast

process so as to get ‘the right answer’
« Dbetter precip forcings and forecast
* higher resolution and higher complexity models
 more observations (meteorological, hydrological)
* model processes viewed literally
* more deterministic prediction

« error can never be eliminated, so make sure you can

represent uncertainty
* ensemble meteorology and hydrology
* hindcastable techniques to support verification
« proactive approach to handling biases
* model processes viewed as parameterizations
* more probabilistic prediction

It's best if the science incorporates elements of both.
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SWE Hydrologic Data Assimilation

Position of 9 case basins and SWE gauge sites

« SWE measurements can be
used objectively to update
hydrologic model states and
improve forecasts
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Hydrologic Data Assimilation

Region: 17 Basin ID: 12147600 Name: SF Tolt River

Example
—— observed runoff — Simulated runoff: DA
Simulated runoff: no DA Ensemble simulated runoff: DA
- Use an ensemble : i
method to estimate Eg
initial conditions E
« Update those conditions _|

. . 19871001 = 19871201 ~ 19880201 19880401 19880601 = 19880801
with SWE observations Time

% 1 *  SWE analysis states Simulated SWE: DA
« Make ESP predictions g .
from mean model states = !
g
+ Assess forecast skill o
after assimilation A

19871001 = 19871201 = 19880201 19880401 19880601 = 19880801
Time



Hydrologic Data Assimilation

NCAR
UCAR

« Evaluation metrics generally show improvements for April-July
ESP mean streamflow forecast for the nine case basins.
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Motivation

2012 User Needs

Short-Term Water Management Decisions

User Needs for Improved Climate, Weather,
and Hydrologic Information

£

US Army Corps
of Engineersg,

Survey of Water Managers RSy

UCAR

Category: Forecasting

Enhanced suite of hydrologic predictions spanning lead times of
days to seasons and consistent with the continuum of weather to
climate forecast products

More reliable guantitative precipitation forecasts (QPF) with lead
times of hours to days

Improved precipitation forecasts for landfalling storms in coastal
areas

Enhanced streamflow predictions with lead times of hours to days,
particularly during storm events

Enhanced streamflow predictions with lead times of days to weeks,
particularly during the snowmelt season

Improved anticipation of runoff volumes with lead times of months to
Seasons

Enhanced prediction products characterizing potential water levels
during storm events

Multivariate suite of climate to hydrologic predictions that
comprehensively characterizes the state and evolution of basin
hydrologic conditions with lead times of days to seasons

A comprehensive survey of water management and operational users
found a widespread need and desire for improved precip and streamflow

forecasts at all scales.



Dissemination & Interaction AR
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The OverThel.oop Streamflow
Forecast Demonstration Project
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Short to Medium Range Streamflow Forecasts Seasonal Streamflow Forecasts

Streamflow forecasts from hours out to 15 days (ie, 'short to medium In many parts of the world, and particularly where reservoirs supply
range') are used for flood control and other daily reservoir operations  water needs during a dry season, or where rivers are fed by snowmelt
that achieve water management objectives such as hydropower (giving long-lead predictability), seasonal streamflow forecasts are a
generation, stream temperature control, navigation support, and critical prediction. A common example is the probabilistic seasonal
irrigation scheduling, among others. Latest Medium-Range Forecasts  runoff volume forecast, which supports high-value seasonal to annual
water system allocation decisions for agriculture and water supply
Straamflow forecasts:for Howarth Hansion Reservalr Inflow WA'(HHDW1) among other uses. Latest Seasonal Forecasts

Intialized on Apr 26 2017
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Short/medium range reservoir inflow forecast, including both

deterministic and ensemble predictions Seasonal reservoir inflow volume forecast evolution plot



Intercomparison of range of methods

What added value does climate information bring?

Example:
Forecast skill across methods for Apr-Jul runoff Hungry Horse
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