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Russian-Napa Basins 2-D Model
• Purpose:

• Account for spatial distribution of rain, 
topography, soils, land use and runoff

• Tool to assess QPE/QPF products
• Research Distributed Hydrologic Model 

(RDHM)
• Developed by NWS-OHD 
• 2-D using HRAP grid (~4.1 km side; ~1 km 

also)
• Gridded precipitation and surface 

temperature 
• Sacramento Soil Moisture Accounting 

Model (SAC-SMA) in each grid cell
• Connectivity derived from DEM
• Runoff (overland and channel) routed by 

kinematic wave equations
• Soils parameters based on SSURGO 
• Channel routing based on USGS field 

measurements 
• Report link: 

http://dx.doi.org/10.7289/V5M32SS9
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RDHM Calibration/Verification
• Calibration Period 

• 2/1/11 – 3/12/12 
• N-S(average) =  0.84

• Verification Period 
• 3/13/12 – 3/31/12
• N-S(average) =  0.75

• Generally characterize as 
“Good” when N-S > 0.7

• In general, RDHM model does 
“OK” in reproducing flood 
peaks and flow recessions
• Concern with 1st storm 

of season
• Storm precipitation 

tracking an issue for 
some events (amount 
and timing) 

• Water management 
influences (reservoirs, 
diversions and return flows) 
not represented

Russian River nr Ukiah
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Low Flow Verification
• 15 tributary sites gaged for low flows by NMFS – basis for verification 

• Verification of lows flows range from “good” to “poor”

• RDHM has low flow predictability of 0.76 cfsm using the OHD default parameters 
(uncalibrated); this improves to - 0.11 cfsm when calibrated. 
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DHM with CHPS-FEWS –Extensions for 
Operations

Import from NCEP

Clip to Russian-

Napa, SF Bay

Export to FEWS

Interact with FEWS

WRF-Hydo/NWM

Import from USGS

Clip to Russian-

Napa, SF Bay

Export to FEWS

Interact with FEWS

CosMos Coastal

Import from FEWS

Apply River Trak 

for Russian

Export to FEWS 

Export to HVT

River Inundation

Import from FEWS

Apply Flow Frequency 

Apply Impact Features

Export to FEWS 

Export to AWIPS2

Hydromet Visualization Tool

Rain Gages

QPE, QPF

Flow Gages

WFO HydroDb

Add’ Data Inputs

Export to RFC 

FEWS

Export to WFO

(FEWS, AWIPS2)

NWS Operations
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Hydrometeorological Visualization Tool (HVT)

HVT Animation and GIS Products

Export to HVT

DHM in CHPS-FEWS



HVT displays animations of (a) grid surface flows, 
and (b) flood flow frequency equivalent

http://www.esrl.noaa.gov/psd/data/obs/sitemap/Anim/rdhm.php

Tim Coleman

http://www.esrl.noaa.gov/psd/data/obs/sitemap/Anim/rdhm.php








National Water Model

Dave Gochis, NCAR



National Water Model Products

NLCD 2011 Land Cover

Fresno

Shallow Water Table Depth

Dave Gochis, NCAR

Dispersed Inundation (ponded water 
depth)

Surface overland flow depth



Coastal Storm Modeling System
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Problem Overview

• Focus is on the upper 
Russian River Basin

• Three criteria:
1. Flood control

2. Water Supply

3. Environmental Flows

• Currently a desire to 
modify operations

• Operations Factors
•Physical constraints
•Water supply demand
•Max release constraints
•Hydrologic index
•Potter Valley Project
•Downstream maximum flows

• Efforts are underway to 
develop forecast informed 
reservoir operation plan 
(FIRO)



Current Operations

• USACE controls 
releases above 
the guide curve

• SCWA makes 
recommendations 
on releases below 
the guide curve

• Releases must 
comply with the 
Hydrologic Index

Source: Determination of a Hydrologic Index for the Russian River 
Watershed using HEC-ResSim, USACE



Optimization Approach

• First consider the problem 
without forecasts

• Can we use dynamic 
programing (DP) methods 
to improve current 
operations

• Explore implicit and 
explicit DP

• Implement rules in 
simulation model

• Apply machine learning 
techniques in the future
•Incorporate forecasts

•Represent Ensemble Forecast 
Operations 

ISDP Q-learning

Optimization 
Output

HEC-ResSim

Performance 
Analysis



Challenges

• Hydrology

• Rapid flow changes

• Low sesason-to-season correlation

• Storm volume

• Wet season ends abruptly

• Multiple Objectives

•Flood control

•Water supply

•Environmental flows

• Explicit DP not pursued

•Low transition probabilities

•Additional random variables (e.g Potter 
Valley)

• Implicit Stochastic DP model 
created

•Weekly time step

•Based on utility functions for each criteria

•Run deterministic DP, then infer operating 
rules

•Used 1950-1999 as training data



Implicit Stochastic DP



Guide curves generated through ISDP analysis

▪ A) Selected the 
higher of values 
from original curve 
and the ISDP value

▪ B) Storage graph 
from HEC-ResSim
using alternate 
guide curves 2000-
2002 

▪ C) Storage graph 
from HEC-ResSim
using alternate 
guide curves 2005-
2007



Implicit Stochastic DP – Performance Measures

Performance 

Measure Title
Related Criterion

Hopland Flow
Flood Control

Days over 120,000 af

Healdsburg Env Flow Environmental

Days under 30,000 af
Water Supply

Minimum Storage

Title of 

Alternative
Description

Current Current operating rules

NoGuideCurv

e

No guide curve (constant 110,000 af) –

Represents preference for water supply and 

environmental flows

NoPVP
No PVP flows – Represents water stressed 

situation

GC_10.0
Results from running ISDP model with guide 

curve penalty of 10.0

GC_5.0
Results from running ISDP model with guide 

curve penalty of 5.0

GC_1.0
Results from running ISDP model with guide 

curve penalty of 1.0

GC_0.5
Results from running ISDP model with guide 

curve penalty of 0.5

GC_0.1
Results from running ISDP model with guide 

curve penalty of 0.1

GC_0.09
Results from running ISDP model with guide 

curve penalty of 0.09



ISDP – Flood Control Measures

High Low

Penalty
High Low

Penalty



ISDP – Water Supply Measures

High Low

Penalty
High Low

Penalty



ISDP - Conclusions

▪ Optimization techniques can provide information for a 
tradeoff analysis between flood control, water supply and 
environmental flows

▪ Able to implement results in current HEC-ResSim model

▪ New curves suggest additional storage at the end of the 
wet season provides benefit to environmental flows and 
water supply



Reinforcement Learning (RL)

▪ Learning best actions through an iterative process

▪ Q-learning algorithm is well suited to this problem

▪ No probability distributions needed

▪ Learning process removes the need for inference



Q-learning

▪ Discretize the state space

▪ Add a dimension for all of the 
discretize actions that can be 
taken at each possible state

▪ Consider the system starting in a 
particular state, then use a long 
series of single day inflows 

▪ Algorithm chooses an action 
based on an explore/exploit 
parameter that we program, and 
ends up in a new state

▪ Algorithm looks at the value that 
is possible for all actions that can 
be taken at that next state
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Q-learning

▪ Here is a video of the learning 
process in action projected into 2-
dimensions.  

▪ This is a very rough prototype 
that Matt created. 

▪ In this video we are just looking at 
the action that provides the 
highest benefit for each state.  

▪ The brighter colors indicate 
higher releases. 

▪ Eventually we want the algorithm 
to converge to a steady state of 
values for each state location in 
this array. 



Q-learning

Forecast 
horizon

▪ This will give us what we need to 
begin using the forecast 
information.  

▪ When you are using forecasts to 
make operational decisions you 
want to look at decisions that will 
give you the most benefit over 
the forecast horizon, and allow 
you to arrive in a state at the end 
of the forecast horizon that will 
provide benefit in the future.  

▪ Considering both of these factors 
prevents making greedy 
decisions.



Conclusions

▪ RL is a powerful method for learning best actions in a highly 
non-linear, stochastic environment

▪ Provides the basis for extending analysis to include ensemble 
forecasts

▪ Flexible for incorporating stakeholder input into reward 
function

▪ Challenges ahead include: 
1. Implementation in code

2. Inclusion of routing and additional reservoir

3. Development of synthetic data

4. MCDA/Robustness analysis for operating decisions 

▪ Suggest more detailed review using webinar. 
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