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ABSTRACT

Atmospheric rivers (ARs) are global phenomena that transport water vapor horizontally and are associated

with hydrological extremes. In this study, the Atmospheric River Skill (ATRISK) algorithm is introduced,

which quantifies AR prediction skill in an object-based framework using Subseasonal to Seasonal (S2S)

Project global hindcast data from the European Centre for Medium-Range Weather Forecasts (ECMWF)

model. The dependence of AR forecast skill is globally characterized by season, lead time, and distance

between observed and forecasted ARs. Mean values of daily AR prediction skill saturate around 7–10 days,

and seasonal variations are highest over the Northern Hemispheric ocean basins, where AR prediction skill

increases by 15%–20% at a 7-day lead during boreal winter relative to boreal summer. AR hit and false alarm

rates are explicitly considered using relative operating characteristic (ROC) curves. This analysis reveals that

AR forecast utility increases at 10-day lead over the North Pacific/western U.S. region during positive El

Niño–Southern Oscillation (ENSO) conditions and at 7- and 10-day leads over the North Atlantic/U.K. re-

gion during negativeArcticOscillation (AO) conditions and decreases at a 10-day lead over theNorth Pacific/

western U.S. region during negative Pacific–North America (PNA) teleconnection conditions. Exceptionally

large increases in AR forecast utility are found over the North Pacific/western United States at a 10-day lead

during El Niño 1 positive PNA conditions and over the North Atlantic/United Kingdom at a 7-day lead

during La Niña 1 negative PNA conditions. These results represent the first global assessment of AR pre-

diction skill and highlight climate variability conditions that modulate regional AR forecast skill.

1. Introduction

Atmospheric rivers (ARs) are narrow plumes of strong

horizontal water vapor transport that are typically found in

the midlatitudes ahead of the cold front of an extratropical

cyclone (Zhu and Newell 1998; Ralph et al. 2004; Neiman

et al. 2008; Cordeira et al. 2013; American Meteorological

Society 2017). They can intensify downstream precipitation
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and influence flooding, snowpack, and water availability

(e.g., Ralph et al. 2004, 2005, 2006; Neiman et al. 2008;

Dettinger et al. 2011; Lavers and Villarini 2015). The

abundance or deficit of ARs strongly influences the

availability or lack of freshwater in a given water year

(Guan et al. 2010; Dettinger et al. 2011; Dettinger 2013).

In addition, heavy precipitation events, flooding condi-

tions, and hazardous winds are strongly correlated to the

occurrence of ARs in many regions around the globe

(Ralph et al. 2006; Ralph and Dettinger 2011; Ralph and

Dettinger 2012; Sodemann and Stohl 2013; Lavers and

Villarini 2015; Nayak et al. 2016; Ralph et al. 2016;

Waliser and Guan 2017).

ARs can have both beneficial (e.g., replenishing water

reservoirs) and detrimental (e.g., causing damaging

floods and landslides) impacts on regional economics

and public safety. Consequently, there is significant in-

centive at the intersection of the research, resource

management, hazard preparedness and response, and

policymaking communities to understand the linkage

between AR landfall and subsequent impacts. This in-

cludes the need to quantify the skill of predicting AR

occurrence, especially in terms of landfall, and to iden-

tify large-scale climate variability conditions during

which forecasts of ARs are more or less skillful.

Given the importance of forecasting AR activity, re-

cent studies have assessed prediction skill in ensemble

forecasts ofARs.Wick et al. (2013) assessedAR landfall

prediction skill of five operational ensemble forecast

systems [National Centers for Environmental Pre-

diction (NCEP), European Centre for Medium-Range

Weather Forecasts (ECMWF), theMet Office (UKMO),

the Canadian Meteorological Centre (CMC), and the

Japan Meteorological Agency (JMA)] over the North

Pacific/western U.S. region from 2008 to 2011 and found

that AR occurrence is relatively well forecast out to a 10-

day lead time (probability of detection. 84% at all lead

times, and false alarms, 12% at all lead times), but that

AR landfall position is subject to significant errors of over

800km at a 10-day lead time. Nayak et al. (2014) used five

operational control forecasts [four of the five operational

models that were used inWick et al. (2013)] from 2007 to

2013 and concluded that the models are not skillful in

forecastingARactivity beyond a 7-day lead time over the

central United States due to errors in both AR occur-

rence and AR landfall location. Note that for each of

these studies, only the control forecast was used. In an

ensemble forecast framework, which is used in this paper,

particular ensemble members may have greater ability

than demonstrated by the control forecast.

Considerable progress has also been made recently in

understanding limits of prediction skill of AR-related

quantities such as integrated vapor transport (IVT) and

precipitation (as opposed to explicitly detecting or de-

fining AR objects). Sukovich et al. (2014) evaluated

extreme quantitative precipitation forecasts (QPFs) and

found higher skill of seasonal extreme QPFs during

boreal winter over the contiguous United States. Moore

et al. (2015) verified precipitation forecasts from the

NCEP Global Ensemble Forecast System from 1985 to

2014 and demonstrated that strong-IVT (likely AR)

extreme precipitation events over North America are

associated with higher forecast skill than weak-IVT

(likely not AR) events out to a 6-day forecast lead

time. Other studies have focused on predictability of

these AR-related meteorological parameters. Lavers

et al. (2014) and Lavers et al. (2016a) distinguished be-

tween forecasts of IVT and precipitation and found

higher predictability in IVT out to a 9-day lead time over

both Europe and the western United States.

The study presented here extends these studies of AR

(and AR related) prediction skill and predictability by

focusing on a global (rather than regional) domain and by

examining the ability of numerical weather prediction

models to predict ARs out to a 14-day lead time, with an

added focus on forecasts that are initialized during certain

conditions of large-scale climate variability.

2. Data and methods

a. ECMWF ensemble hindcasts: A subset of the S2S
database

To assess the prediction skill of ARs, global hindcast

data from the newly created Subseasonal to Seasonal

(S2S) Project database (Table 1 of Vitart et al. 2017) are

used. The analysis is limited to one of the S2S models,

the ECMWF model, over the period from 1996 to 2013.

The model data are retrieved at a 1.58 3 1.58 grid, which
is the default archive grid for ECMWF hindcasts in the

S2S database. Hindcasts are made twice a week, and

there are 10 perturbed forecast members available.

Ocean coupling is included in the ECMWF hindcasts,

but sea ice coupling is not. Hindcasts are made ‘‘on the

fly,’’ which means that ECMWF updates the version of

their model at various times during a given year. The

ECMWF hindcasts used in the present study were

produced with model versions between May 2015 and

May 2016 and therefore used mostly Integrated Fore-

cast System (IFS) model versions 41r1 (41r2 after

March 2016).

The ECMWF interim reanalysis (ERA-I) dataset

(Dee et al. 2011a) is used as a proxy observation.

The reanalysis data are available on a 0.758 3 0.758 grid
and are bilinearly interpolated to match the coarser

hindcast grid.
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Ten perturbed ECMWF hindcast ensemble members

are analyzed (the control hindcast is not included be-

cause it was not available for download at the time of

data retrieval), as is ERA-I data from 1996 to 2013 at

0000 UTC using specific humidity q and zonal u and

meridional y winds at 300-, 500-, 700-, 850-, and

1000-hPa vertical levels. The zonal and meridional

components of the IVT [defined as the vertical integral of

the product of specific humidity and zonal/meridional

wind; see Zhu and Newell 1998, their Eqs. (7a) and (7b)]

are calculated first. Subsequently, the Guan and Waliser

(2015, hereafter GW2015) AR detection algorithm,

which identifies ARs objectively as contiguous regions

(objects) where IVT at each grid cell exceeds the 85th

percentile specific to the region and season and with the

length of the object . 2000km and length-to-width

ratio . 2, is applied on these IVT fields. This algorithm

detects ARs globally in the manner described above as a

function of ensemble member and lead time (1–14 days

at a 1-day step). Focus is placed on the November–March

(NDJFM) and May–September (MJJAS) seasons.

b. Object-based detection for forecast verification

Object-based forecast verification involves evaluating

a model’s ability to predict sporadic, episodic atmo-

spheric phenomena that are heterogeneous in space and

time (Ebert and McBride 2000; Davis et al. 2006). Re-

cent studies have explained how traditional methods of

verifying numerical weather forecasts (e.g., root-

mean-square error) of relatively smooth fields (e.g.,

upper-tropospheric winds) may not be suitable for

verification of episodic, localized features (e.g., at-

mospheric rivers) that have considerable spatiotem-

poral variability (Ebert 2008; Mittermaier et al. 2015).

The GW2015 algorithm employs an object-based ap-

proach and detects ARs based on synoptic features that

represent a rough consensus of AR characteristics (IVT,

geometry, etc.). The algorithm introduced in this study

takes these AR objects as input, identifies the latitude

and longitude coordinates of their IVT-weighted cen-

troid, and compares the distance between any grid cell

and all AR object centroids to a user-defined distance

threshold. This process is described in more detail in

sections 2c and 3b(1).

c. ATRISK algorithm description

The Atmospheric River Skill (ATRISK) algorithm

helps us achieve two primary goals in this paper. The

first goal is to compute the percentage of ECMWF en-

semble members that can skillfully predict an observed

AR (i.e., AR hit percentage) as a function of season,

location, lead time, and an acceptable (great circle)

distance threshold between the centroid of the observed

and forecasted AR (1000, 500, and 250km tested in this

study). The great circle distanceD between the centroid

of a given grid cell and the centroid of an AR object is

calculated as
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for latitude u and longitude l.

The second goal is to compute relative operating

characteristic (ROC) curves (Hanley and McNeil 1982)

for ARs, which account for hits (observed AR and

forecastedAR),misses (observedAR, but no forecasted

AR), false alarms (no observed AR, but forecasted

AR), and correct rejections (no observed AR and no

forecasted AR). ROC curves have been previously used

in applied weather and climate studies that seek to dis-

cern the utility of operational forecasts of atmospheric

and/or oceanic fields (e.g., Mason and Graham 2002)

and have recently been used to evaluate how well IVT

can discriminate extreme precipitation events (Lavers

et al. 2016b). Hit rates are calculated as [number of hits/

(number of hits1 number ofmisses)] and are equivalent

to probability of detection (POD). False alarm rates are

calculated as [number of false alarms/(number of false

alarms 1 number of correct rejections)] over a given

time period of interest. This quantity is distinct from

false alarm ratio (FAR), which is often implemented as

an operational forecast verification tool and is calculated

as [number of false alarms/(number of false alarms 1
number of hits)] (see Barnes et al. 2009). Area under

ROC curve values (ROC scores), which are introduced

in section 3b(2), are proportional to the critical success

index (CSI), which is defined as [number of hits/(number

of hits 1 number of misses 1 number of false alarms)].

The ROC sensitivity to season, location, lead time, and

states of various modes of climate variability is further

examined.

The first goal diagnoses the ability of ECMWF to

forecast an observedAR1–14 days in advance, while the
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second objective assesses AR forecast utility in

ECMWF by explicitly considering all contingency table

values (hits, misses, false alarms, correct rejections). The

ROC is introduced to achieve the second objective as a

way to expand the scope of this study and more thor-

oughly assess model performance. Note that if one only

uses the hit percentage from the first part of this study

and does not include ROC analysis (or a similar

metric), a model that forecasts ARs everywhere at all

times will appear to be perfect. It is only by considering

false alarms, misses, and correct rejections (in addition

to hits) that this can be adequately accounted for. Both

approaches together allow us to quantify sensitivities of

AR prediction skill to region, lead time, season, and

background phases of climate variability at hindcast

initiation.

ATRISK follows the steps below to achieve the first

goal. Additional steps are given in section 3b(1) that

allow for accomplishing the second goal.

1) Retrieve observed (ERA-I) andmodeled (ECMWF)

AR centroid longitude and latitude values. For

ECMWF, this is done for all lead times (1–14 days)

and ensemble members 1–10.

2) For each day, assign the value of 1 to all grid cells

whose distance is withinD kilometers of the centroid

of an observed AR object present at that given time

step. Other grid cells are assigned the value of 0.

3) For each modeled hindcast (at a given lead time and

for a given ensemble member), assign the value of 1

to all grid cells across the globe whose centroid is

withinD kilometers of the nearest AR object at that

given time step. Shaded grid cells are saved with

values of 1.

4) Using the 10 ensemble member shaded fields from

step 3, compute an ensemble-average field for each

hindcast and lead time at each grid cell.

As an example, consider all 1996–2013 4 January hind-

casts in the ECMWF dataset, and consider the 7-day

lead time. In step 3, global maps are created with shaded

values of 1 that correspond to grid cells that are withinD

kilometers of the nearest AR object centroid. This is

done for each ensemble member, yielding 10 global

maps with shaded orbs (which have values of 1), similar

to the orbs shown in Fig. 1b. Step 4 then creates an

ensemble-averaged field from these 10 maps, with ‘‘en-

semble-average orbs’’ ranging between 0 and 1.

A visual summary of the GW2015 and ATRISK al-

gorithms is shown in Fig. 1. AR objects at 0000

UTC 2 March 1996, as detected by the algorithm in-

troduced in GW2015, are shown in Fig. 1a and are

shaded in blue. ATRISK objects within 1000km of the

AR objects are shown in Fig. 1b and are also shaded in

blue. The method of determining if a predicted AR is a

‘‘hit’’ or ‘‘miss’’ relative to an observed AR is shown in

Fig. 2. In this example, the prediction of AR1 is con-

sidered skillful (a hit) since its centroid falls within the

distance threshold of the observed AR, while the pre-

diction of AR2 is not considered skillful (a miss) since its

centroid falls outside the distance threshold of the

observed AR.

To achieve the first goal, all observed AR objects are

identified, and their centroid longitude and latitude are

compared to each ensemble member AR object (as a

function of lead time). These results are described in

section 3a and with Figs. 2–4. Achieving the second goal

is more complex, and the steps taken to create Figs. 5–8

are described in section 3b.

3. Results and discussion

a. Global climatology of AR hits and sensitivity to
lead time, season, and distance threshold

The average 1996–2013 NDJFM percentage of

ECMWFensemblememberARhits at a 7-day lead time

is shown globally in Fig. 3 using a 1000- and 500-km

distance threshold between observed and forecasted

ARs. The blue polygons drawn in Fig. 3a denote the area

average domains used throughout this study. This is the

first approach used to assess global AR prediction skill

(i.e., focusing only on hits, namely, the fraction of en-

semblemembers that forecast anARwithin the distance

threshold).

For a given distance threshold, hit percentages are

generally higher over ocean basins than over land re-

gions, and hit percentage decreases by 25%–35% in

most locations for the 500-km threshold relative to the

1000-km threshold. Because ARs are sporadic phenom-

ena, the global hit percentage map for a single hindcast

would contain some grid cells with missing hit percentage

values, since the presence of observed and forecasted

ARs is less likely in a smaller sample of data. Using all

hindcasts from a single season (as in Figs. 3a,b) has the

effect of smoothing the statistics in space, since more

observed and forecastedARpairs are captured in a larger

sample. There are still areas in Figs. 3a and 3b where NA

(missing) values are present due to a lack of observed and

forecastedARs. Thismight occur, for example, in regions

of low climatological AR frequency (e.g., eastern equa-

torial Pacific; see GW2015, their Fig. 7a), or because the

twice-a-week hindcast frequency omits some observed

ARs. During boreal summer, hit percentages are highest

in the Southern Hemisphere and decrease by 20%–30%

in most North Hemispheric regions for both 1000- and

500-km distance thresholds (not shown).
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Area-averaged AR hit percentages are shown as a

function of lead time, season (colors), and distance

threshold (1000 km, solid lines; 500 km, dashed lines;

250km, dotted lines) in Figs. 4a–d for the North Pacific/

western United States (358–458N, 1508–1258W), North

Atlantic/United Kingdom (458–608N, 308W–08), South
Pacific/Australia (308–408S, 1458–1708E), and South

Pacific/Chile (308–408S, 1108–708W) regions during

NDJFM and MJJAS. These regions are chosen because

they coincide with midlatitude storm tracks, are up-

stream of heavily populated regions, and include coast-

lines where AR landfalls are frequent (GW2015, their

Fig. 8a). GW2015 identified NDJFM as a climatologi-

cally active AR season for the Northern Hemispheric

regions and MJJAS as a climatologically active AR

season for the Southern Hemispheric regions (see their

Fig. 9b). Mundhenk et al. (2016) and Eiras-Barca et al.

(2016) identified boreal winter (DJF) as a climatologically

active season for ARs relative to boreal summer over the

North Pacific/western U.S. and North Atlantic/U.K.

regions, respectively, used in this study. In addition, for all

regions, AR landfalls can have major socioeconomic

consequences in association with extreme precipitation

and winds (e.g., Waliser and Guan 2017). NDJFM and

MJJAS are used instead of DJF and JJA in order to in-

crease the sample size of AR hits for a given season, thus

increasing the signal-to-noise ratio. In addition, for

the west coast of North America and northwestern

Europe, ARs are quite typical during this extended

winter season.

Horizontal solid lines represent the observed ERA-I

1996–2013 reference climatologies of AR frequency for

the given region, season, and distance threshold (DT).

These lines represent the long-term chance of a grid cell

(or in this case, a regional average of grid cells) being

within DT kilometers of an observed AR (with DT 5
1000, 500, or 250 km), or put another way, the skill based

on using climatology as the forecast model. Therefore,

the hit percentages shown in Fig. 4 can be thought of as

skillful (or useful) relative to the observed climatological

FIG. 1. GW2015 and ATRISK algorithm schematics. (a) AR objects at 0000 UTC 2 Mar

1996 as detected by the algorithm introduced inGW2015. (b) Shaded grid cells fromATRISK

within 1000 km of the AR objects shown in (a).
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AR frequency (i.e., the long-term chance of a grid cell

being within DT kilometers of an observed AR) if their

values at a given lead time are above the horizontal line

(the observed AR frequency climatology). A calculation

of a similar reference climatology is made for ECMWFat

all lead times and shows a very close agreement with the

observed reference climatology in all regions, indicating

that there are no significant model biases in AR occur-

rence in these regions (even out to 28 days, not shown).

AR hit percentage is most variable over the North

Pacific/western U.S. region, while both Southern Hemi-

spheric regions show little seasonal variability. In all re-

gions, hit percentages asymptote to a ‘‘noise floor’’

around 10-, 8-, and 6-day lead times for the 1000-, 500-,

and 250-km thresholds, respectively. The noise floor for

each distance threshold and seasonal pairing is very close

to the observed reference climatology, which is consistent

with the interpretation that the values of the asymptotes

represent the odds of a random AR falling within the

associated distance threshold of an observed AR.

The lead time at which AR hit percentage equals 50%

as a function of distance threshold is shown in Fig. 5a for

the North Pacific/western U.S. and South Pacific/Chile

regions during NDJFM (black) andMJJAS (blue). Such

information is an important consideration if the landfall

location and associated landfall distance error is rele-

vant, for example, for reservoir management or hazard

response. For example, if a decision-maker, impacted by

North Pacific/western U.S. ARs, is able to make a decision

based on at least 50% hit percentage but requires distance

errors to be no larger than 250km, then the forecastmaynot

generally be reliable in this sense until 2–3 days before the

landfall occurs. On the other hand, if the decision can be

made from a consideration of 1000-km landfall error, then

the forecast may be useful at a lead time of 7 days.

The AR hit percentage at a 7-day lead time as a

function of distance threshold for the same regions and

seasons is shown in Fig. 5b, along with reference cli-

matology values. This information is relevant for

medium-range weather forecasting or reservoir man-

agement. For example, if a water reservoir manager in

California can improve his or her management by

knowing that the climatological chance of a forecasted

AR occurring within 500 km of an observed AR at their

FIG. 2. Method of determining if a predicted AR is a hit or a miss relative to an observed

AR. Predicted and observed ARs are shown as shaded light and dark shaded ovals, re-

spectively. Their IVT-weighted centroids are shown as black dots, and the distances D1 and

D2 between each predicted AR and the observed AR are shown as black arrows. DT, which

indicates the acceptable horizontal distance between an observed and predicted AR for

a prediction to be considered skillful, is shown as a black arrow. In this example, the pre-

diction ofAR1 is considered skillful (a hit) since its centroid falls within the distance threshold

of the observed AR, while the prediction of AR2 is not considered skillful (a miss) since its

centroid falls outside the distance threshold of the observed AR.
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reservoir based exceeds 20%, only boreal winter

(NDJFM) forecasts would be reliable compared to bo-

real summer (MJJAS) forecasts.

Results from previous studies generally corroborate

the findings presented here, though no studies to date

have estimated prediction skill on a global scale at lead

times extending out to 14 days of the AR objects

themselves in the manner of Figs. 2–4. Wick et al. (2013)

computed the correlation coefficient between three

boreal winter seasons (2008–11) of observed integrated

water vapor (IWV) fields [from Special Sensor Micro-

wave Imager (SSM/I) satellite data] and five numerical

weather prediction model control forecasts of AR-

related IWV over the North Pacific at 1-, 3-, 5-, 7-, and

10-day lead times. In most models, the correlation co-

efficient reduces by approximately 30% between 7- and

10-day leads. Though not directly comparable due to

differences in methodology, record length, and domain

size, the results in Fig. 4a are generally consistent, as the

North Pacific/western U.S. hit percentages during

NDJFM decrease by approximately 30% of their initial

values at around 7- to 8-day lead times. Lavers et al.

(2016a) estimated predictability of IVT over the eastern

North Pacific/western U.S. region from the NCEP

Global Ensemble Forecast System (GEFS) hindcast

data from 1984 to 2015 and found indications of pre-

dictability out to a 9-day lead time (and out to a 7-day

lead time for precipitation). Note that in this study,

prediction skill is quantified rather than estimating

predictability, and thus skill values are expected to be

less than predictability values.

An additional calculation of AR prediction skill is

now made using ROC curves, which explicitly account

for false alarms in addition to hits. To illustrate the need

for this consideration in simple terms, consider a fore-

cast model that forecasts ARs everywhere all the time.

Its hit percentage would be perfect all the time, yet it

would actually be a poor forecast model as it would be

overly fraught with false alarms.

b. Assessing AR prediction skill using ROC curves

The ROC methodology mentioned in section 2c is

now employed as a second approach to assessing global

AR prediction skill. To account for both hits and false

alarms, ROC curves and areas are calculated for ARs us-

ing the ERA-I and ECMWF hindcast ensemble datasets.

FIG. 3. The 1996–2013 ECMWF NDJFM average percentage of ensemble members that

forecast AR hits at a 7-day lead time using (a) 1000- and (b) 500-km distance thresholds. The

blue polygons in (a) denote the area average domains used throughout this study. Gray

shading indicates regions where no ARs are detected.
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1) STEPS CONTAINED IN ATRISK TO CALCULATE

ROC CURVES AND SCORES IN FIGS. 5–8

To calculate ROC curves for a given great circle dis-

tance threshold of D kilometers, the following steps are

used:

1) Follow steps 1–4 outlined in section 2c.

2) Use a range of trigger thresholds above which

decision-makers might issue warnings or enact

contingency plans for an impending impactful

event. Here, the trigger thresholds are 0, 0.1, 0.2,

0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0. They

represent the fraction of ECMWF ensemble mem-

bers that agree on a forecast of an AR. Then,

compare each trigger threshold to the fields cre-

ated in steps 1–4 from section 2c. If the average

forecast probability shaded field is greater than

the trigger threshold value, store a value of ‘‘1.’’ If

not, store a value of ‘‘0.’’

3) Compute contingency table fields as follows, as a

function of time and trigger threshold, at each grid cell:

(i) Hit field: store value of 1 if the observed field5
1 (observed AR present within D kilometers),

and the model field 5 1 (modeled AR present

within D kilometers at the given threshold).

Otherwise, store a 0.

FIG. 4. The 1996–2013 ECMWFaverage percentage of ensemblememberARhits vs lead time over the (a) North

Pacific/western U.S., (b) North Atlantic/U.K., (c) South Pacific/Australia, and (d) South Pacific/Chile regions

during NDJFM (black) and MJJAS (blue) and using distance thresholds of 1000 (solid), 500 (dashed), and 250 km

(dotted). Horizontal solid lines represent ERA-I reference climatology of AR frequency for the given region,

season, and distance threshold.
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(ii) Miss field: store value of 1 if the observed field5
1 (observed AR present within D kilometers),

and the model field 5 0 (no modeled AR

present withinD kilometers at the given thresh-

old). Otherwise, store a 0.

(iii) False alarm: store value of 1 if the observed

field 5 0 (no observed AR present within D

kilometers), and the model field 5 1 (modeled

AR present within D kilometers at the given

threshold). Otherwise, store a 0.

(iv) Correct rejection: store value of 1 if the ob-

served field5 0 (no observedARpresent within

D kilometers), and the model field 5 0 (no

modeled AR present withinD kilometers at the

given threshold). Otherwise, store a 0.

4) Compute hit rates and false alarm rates and create

ROC curves and global maps of the area under the

ROC curves.

2) LONG-TERM MEAN ROC CURVES

The 1996–2013 average ROC curve for NDJFM

over the North Pacific/western U.S. region at various

lead times is shown in Fig. 6a. Triangles denote hit

rate and false alarm rate values at a given trigger

threshold. The threshold labels below the x axis cor-

respond to the triangles on the plot. At short (3 and

5 days) lead times, the ROC curves are closer to the

top-left corner of the graph, indicating that forecasts

of ARs at those lead times are useful (i.e., high hit

rates and small false alarm rates). At longer (14 days)

lead times, the ROC curves are closer to the solid

black line, which means that a forecast of an AR at

those lead times is only marginally more useful than a

random guess (i.e., equal probability of hit and false

alarm). This representation of AR prediction skill

improves the understanding of the extent to which an

AR forecast is more skillful than a random guess and

distinguishes actual skill from stochastic chance.

We will introduce a more formal statistical signifi-

cance test in section 3b(5) to quantify the extent to

which ROC curves composited on various modes of

climate are significantly different from long-term av-

erage ROC curves. This comparison more explicitly

distinguishes a forecast ROC curve from a random

guess. The 1996–2013 average area under the ROC

curve calculated at each grid cell globally at a 7-day

lead time is shown in Figs. 6b and 6c using a 1000- and

500-km distance threshold. Area under ROC curve

values (or ‘‘ROC scores’’) for the 1000-km threshold

uniformly range between 0.7 and 0.9 at most places,

while values at the 500-km threshold are smaller by

about 0.1–0.2 and noisier.

Area-averaged ROC scores are shown in Fig. 7 as a

function of lead time, season (colors), and distance

threshold (as in Fig. 4). The bold horizontal line at

0.5 represents the baseline for a useful forecast, since

ROC scores that equal 0.5 indicate an equal proba-

bility of hits and false alarms. ROC scores, which

explicitly account for both AR hits and AR false

alarms, are higher during boreal winter in the

North Pacific/western U.S. and North Atlantic/U.K.

regions, especially at 1000- and 500-km distance

thresholds.

FIG. 5. (a) Lead time at which 1996–2013 ECMWF average AR

hit percentage 5 50% vs distance threshold and (b) AR hit per-

centage at a 7-day lead time vs distance threshold during NDJFM

(black) and MJJAS (blue). Reference climatology values in (b) at

each distance threshold are denoted with an asterisk.
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3) MOTIVATION FOR ASSESSING AR PREDICTION

SKILL CONDITIONED ON VARIOUS STATES OF

THE CLIMATE

A conditional verification is now undertaken using

hindcasts that are initialized during positive and nega-

tive phases of several modes of climate variability. The

purpose of this analysis is to test whether or not addi-

tional forecast skill and utility can be gained during

certain phases of climate mode variability. The re-

lationship between AR forecast utility and climate var-

iations is examined here using the El Niño–Southern
Oscillation (ENSO), the Arctic Oscillation (AO),

and the Pacific–North America (PNA) teleconnection

pattern. These climate variations are a focus because

AR frequency is sensitive to the phase of each of

these modes over particular regions around the globe

(GW2015). In addition, ENSO phase can be a useful

predictor not only for seasonal forecasts of precipitation

(Pezzi and Cavalcanti 2001; Coelho et al. 2002;

Taschetto et al. 2016), but for subseasonal and synoptic

time-scale forecasts as well (e.g., Li and Robertson

2015). Black et al. (2017) also examined subseasonal

prediction of the modes of climate variability them-

selves [namely, AO, PNA, and the North Atlantic Os-

cillation (NAO)]. Their results suggest that the AO and

the PNA, along with the NAO, can be predicted with

statistically significant skill by a statistical model based

on partial least squares regression up to lead times of

4–5 weeks relative to climatology and persistence.

Emphasis is also placed on phase-locked ENSO–PNA

conditions because there is some evidence for useful

prediction skill of ENSO on monthly-to-seasonal time

scales (Dayan et al. 2014; Barnston et al. 2012), and

for a strong relationship between PNA circulation

anomalies and El Niño (Abid et al. 2015). Muñoz et al.
(2015) also suggest that skillful prediction of extreme

precipitation can be increased during particular

phase-locking configurations of ENSO, the Atlantic

meridional mode (AMM), and other potential pre-

dictor modes of variability. In addition, it will be

shown in Fig. 9 that AR frequency anomalies are

magnified during these phase-locked conditions rela-

tive to the individual mode responses.

The conditional ROC curves shown in this section

might be a useful reference, for example, in issuing a

forecast over a given region where AR activity projects

strongly onto precipitation. If a forecaster knows that

AR frequency anomalies are positive or negative

during a certain mode phase, it may be useful to know

the relative utility of AR forecasts during those phases

(as quantified by the conditional ROC curves) as a pa-

rameter to consider when making a forecast.

FIG. 6. (a) ROCcurve of North PacificARs for 1996–2013NDJFMaverage using 1000-kmdistance threshold at 3-, 5-, 7-, 10-, and 14-day

lead times. Triangles denote hit rate and false alarm rate values at a given trigger threshold. Area under 1996–2013 NDJFM ROC curve

(i.e., ROC score) at a 7-day lead time for a (b) 1000- and (c) 500-km threshold.
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A more detailed overview of atmospheric tele-

connections related to these modes of variability is

provided below.

4) OVERVIEW OF ATMOSPHERIC

TELECONNECTIONS AND DESCRIPTION OF

CLIMATE INDICES USED

Large-scale extratropical midlatitude dynamics can be

strongly influenced by remote variations in tropical

Pacific sea surface temperature (SST) associated with

ENSO (Bjerknes 1969; Rasmusson and Wallace 1983;

McCabe and Dettinger 1999; Meehl et al. 2007; DeFlorio

et al. 2013). This connection between climate mode var-

iability (e.g., ENSO) and atmospheric circulation can

have significant impacts on the orientation and fre-

quency of ARs and resultant extreme precipitation

(Cordeira et al. 2013; GW2015). In the North Pacific,

variations in extratropical geopotential height anoma-

lies that define the PNA are associated with distinct

weather variations over theUnited States and have been

shown to respond linearly to changes in tropical Pacific

SST (Tsonis et al. 2008; Wallace and Gutzler 1981).

Negative PNA conditions are associated with a weak-

ening of the Aleutian low (Renwick and Wallace 1996)

and more zonal flow over the North Pacific/western U.S.

midlatitudes (Leathers et al. 1991, their Fig. 1).

The following climate indices, obtained from the

National Oceanic and Atmospheric Administration’s

FIG. 7. The 1996–2013 ECMWF area under ROC curve (i.e., ROC score) vs lead time over the (a) North Pacific/

western U.S., (b) North Atlantic/U.K., (c) South Pacific/Australia, and (d) South Pacific/Chile regions during

NDJFM (black) and MJJAS (blue) and using distance thresholds of 1000 (solid), 500 (dashed), and 250 km

(dotted).
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Climate Prediction Center, are used in this study: 1) the

Niño-3.4 index (mean SST anomalies in the central/

eastern equatorial Pacific between 58S and 58N and be-

tween 1908 and 2408E) and 2) daily values of theAO and

PNA teleconnection indices, which are computed by

projecting daily geopotential height anomalies at

1000hPa (for AO) and 500 hPa (for PNA) onto their

empirical orthogonal function loading patterns.

5) CLIMATE-CONDITIONED ROC CURVES

ROC curves for positive and negative phases of each

mode (defined as 0.5 standard deviation above or below

zero based on their respective indices) at hindcast ini-

tialization over the North Pacific/western U.S. region

during DJF (for ENSO), the North Atlantic/U.K. region

during DJF (for AO), and the North Pacific/western

U.S. region during DJF (for PNA) at 3-day (solid line),

7-day (dashed line), and 10-day (dotted line) lead times

are shown Figs. 8a–c. Focus is restricted to DJF in an

attempt to capture periods where teleconnected climate

variability is most prevalent. To estimate the statistical

significance of the results, a bootstrap process is

repeated 1000 times with replacement to create ROC

score distributions (shown to the right of each ROC

curve plot) by using resampling of the positive mode

days (red box plots), negative mode days (blue box

plots), and ‘‘all days’’ distribution (white boxplots). If

the difference between the actual ROC score of the all-

days distribution and either positive or negative mode

distribution lies outside of the 5th or 95th percentile of

the distribution of bootstrap ROC score differences,

then the ROC curve circles (representing each trigger

threshold value) are filled. If the difference is in-

significant at the 90% confidence level, then the ROC

curve circles are unfilled. ROC curves that have large

ROC score differences between positive and negative

phases in the bootstrapped samples are shown in Fig. 8.

These results indicate that AR hindcasts from the

ECMWF model are more useful (i.e., relatively higher

ratio of hits to false alarms) during El Niño conditions

over the North Pacific/western U.S. region at a 10-day

lead time in boreal winter, and during negative AO

conditions at a 7-day lead time over the North Atlantic/

U.K. region boreal winter. Hindcasts are less useful (i.e.,

FIG. 8. ROC curves composited on positive (red) and negative (blue) phases of (a) ENSO in DJF over the North Pacific/western U.S.

region, (b) AO in DJF over the North Atlantic/U.K. region, and (c) PNA teleconnection in DJF over the North Pacific/western U.S.

region. The 1000-kmdistance threshold is used, and positive and negative phases are defined using60.5 standardized values of the climate

index for each mode. Lead times of 3 days (solid), 7 days (dashed), and 10 days (dotted) are shown. The number of positive and negative

phase days for each mode phase is listed above the legend. Area under ROC curve distributions for each region/mode/lead time of

relevance, calculated from a bootstrap process that was repeated 1000 times by using resampling of the composite positive and negative

mode days (red and blue, respectively) and all days (white) distributions with replacement, is included beside the ROC curves.
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relatively lower ratio of hits to false alarms) during

negative PNA conditions at a 10-day lead time over the

North Pacific/western U.S. region in boreal winter.

Observed AR frequency anomalies are relatively large

for the region and mode pairings examined here (shown

in GW2015), which is why these pairings are shown. AR

hindcast utility is also higher during La Niña and nega-

tive PNA conditions over the North Atlantic/U.K. re-

gion at a 7-day lead time in boreal winter (Fig. S1 in the

supplemental material).

Observed anomalies of AR occurrence (1996–2013,

ERA-I) are shown in Fig. 9 for phase-locked conditions

of ENSO and PNA (El Niño and 1PNAin Fig. 9a; La

Niña and2PNA in Fig. 9b). AR occurrence is defined as

the number of ARs over a 14-day time window

covering a grid cell. Anomalies are computed as the AR

occurrence values on phase-locked ENSO/PNA days

minus the long-term mean AR occurrence values. The

spatial pattern of the individual mode AR occurrence

anomalies is reminiscent of the individual mode AR

frequency anomalies shown in GW2015. It is clear from

Fig. 9 that over the 1996–2013 observed period, phase-

locked AR occurrence anomalies are enhanced relative

to the individual mode magnitudes over certain re-

gions shown in GW2015 (e.g., North Pacific/western

United States).

ROC curves for positive and negative phases of the

phase-locked mode conditions are shown in Fig. 10 at

3-day (solid line), 7-day (dashed line), and 10-day

(dotted line) lead times during DJF over the North

Pacific/western U.S. region and over the North Atlantic/

U.K. region, along with the ROC scores from the boot-

strapped distributions for each phase-locked mode con-

ditions at 10- and 7-day lead times, respectively. Mean

area under ROC curve scores for bootstrapped samples

shown in Figs. 8 and 10 are displayed in Table 1. Over the

North Pacific/western U.S. region at a 10-day lead, the

difference between El Niño and 1PNA and La Niña
and2PNAmean ROC score shown in Fig. 10a is twice

as large as the difference between either the El Niño
and La Niña mean ROC score shown in Fig. 8a or

the 1PNA and 2PNA mean ROC score shown in

FIG. 9. The 1996–2013 ERA-I anomalies of AR occurrence on (a) El Niño and 1PNA

conditions and (b) LaNiña and2PNA conditions. AR occurrence is defined as the number of

ARs over a 14-day time window covering a grid cell. Anomalies are computed as the AR

occurrence values on phase-locked ENSO/PNA dates minus the long-term mean AR

occurrence values.
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Fig. 8c. Similarly, over the North Atlantic/U.K. region,

the difference shown in Fig. 10b is larger than the dif-

ferences between the individual mode mean ROC

scores shown in Fig. S1. These results indicate that the

difference in AR forecast utility on positive and neg-

ative phase-locked conditions can be even larger than

on positive and negative conditions of the individual

modes themselves, suggesting the potential for ‘‘fore-

casts of opportunity’’ when a forecast is initialized

during these phase-locked periods.

Although the influence of ENSO and PNA on North

Pacific/western U.S. climate is well known, the linkage

between these modes and circulation over the North

Atlantic/U.K. region is less obvious. Brönnimann (2007)

summarized the impact of ENSO on European climate

and noted that in late winter, El Niño (La Niña) con-
ditions generally resemble negative (positive) NAO

conditions, but that the signal is different in early winter

and spring. This review paper also notes that the mean

ENSO signal over Europe is not strong, but can vary and

is more important if the local atmosphere is precondi-

tioned in a particular flow regime. Stan et al. (2017) note

that in general, a primary response of the extratropical

circulation to organized tropical convection is modified

Rossby wave propagation and midlatitude storm track

amplitude and orientation. Song et al. (2009) found an

anticorrelation between the PNA and NAO during bo-

real winter that they attributed to anomalous Rossby

wave breaking events associated with the PNA pattern.

Similarly, Drouard et al. (2015) found that geopotential

height anomalies over the North Pacific/western U.S.

region associated with ENSO and/or the PNA pattern

modify the direction of downstream wave propagation

and subsequent wave breaking over the North Atlantic

region. It is therefore plausible that individual and phase-

locked ENSO and PNA conditions could affect climate

(and therefore prediction skill ofARs, which is intimately

related to regional circulation) over the North Atlantic/

U.K. region via anomalous upstream Rossby wave

breaking events in the midlatitudes (ENSO projects onto

midlatitude North Pacific climate by modulating the

phase or amplitude of the subtropical jet, which also in-

fluences the PNA pattern, and these wave perturbations

are then felt downstream over Europe days later).

FIG. 10. As in Fig. 8, but for the combinedENSO and PNA teleconnectionmodes inDJF over

(a) the North Pacific/western U.S. region and (b) the North Atlantic/U.K. region.
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4. Conclusions

This study builds on recent advances in objective de-

tection of atmospheric rivers that can be applied to both

observations (GW2015) and global weather and climate

models (Guan and Waliser 2017) and the availability of

subseasonal hindcasts from operational models (Vitart

et al. 2017) to quantify global prediction skill of ARs

using two decades of ECMWF hindcast data at lead

times ranging from 1 to 14 days. AR prediction skill is

first quantified by diagnosing the ability of the ECMWF

model to predict an observed AR as a function of lead

time and distance threshold between the centroid of an

observed and forecasted AR, averaged over all hind-

casts. The average percentage of ECMWF ensemble

members that skillfully predict an AR shows highest

variability during boreal winter in the North Pacific/

western United States (Fig. 4). Southern Hemispheric

regions exhibit little seasonal dependence in AR fore-

cast skill. Over the North Pacific/western U.S. region,

the lead time at which AR hit percentage equals 50%

increases by 2.5 days during NDJFM relative to MJJAS

using a 1000-km threshold, and the AR hit percentage

at a 7-day lead time increases by 15%–20% during

NDJFM relative to MJJAS using a 1000-km distance

threshold.

This study also examines 1996–2013 average ROC

curves, which explicitly account for both hits (forecasted

AR and observed AR) and false alarms (forecasted AR

but no observed AR). The long-term mean curves are

shown in Fig. 6 and are composited on various phases of

climate variability at hindcast initialization in Figs. 8 and

10. This alternativemethodology quantifies the extent to

which an AR forecast is more useful than a random

guess. Evidence for statistical increases in AR forecast

utility (i.e., relatively higher ratio of hits to false alarms)

at a 10-day lead is demonstrated during El Niño condi-

tions over the North Pacific/western U.S. region in bo-

real winter and at a 7-day lead during negative AO

conditions over theNorthAtlantic/U.K. region in boreal

winter. Evidence for statistically significant decreases in

AR forecast utility (i.e., relatively lower ratio of hits to

false alarms) is demonstrated at a 10-day lead during

negative PNA conditions over the North Pacific/western

U.S. region in boreal winter. It is also shown that the

difference in AR forecast utility between positive and

negative phase-locked conditions of ENSO and PNA is

at least twice as large over the North Pacific/western

U.S. region and North Atlantic/U.K. region compared

to the positive and negative individual mode conditions,

suggesting the potential for ‘‘forecasts of opportunity’’

when a forecast is initialized during these phase-locked

periods of climate variability.

Future studies must address several aspects of quan-

tifying AR prediction skill that are not explored in this

study. Multimodel assessment of AR prediction skill is

needed in order to test these results with respect to

sensitivities in model configuration, hindcast frequency,

ensemble size, and record period. Additional features of

the ARs themselves (e.g., orientation with respect to

coastline and orography) might also be considered, as

they can have significant impacts on resultant extreme

precipitation. More targeted metrics of AR skill (e.g.,

landfall location) might be considered in future studies to

more directly target water resource management and

decisions applications. The composite ROC results

should be calculated using different time periods to ac-

count for potential nonstationarity of climate mode tel-

econnections (e.g., Diaz et al. 2001). Subsequent efforts

might also quantify potential predictability limits (e.g.,

Waliser et al. 2003; Lavers et al. 2016a) of AR objects on

subseasonal time scales, as well as AR frequency of oc-

currence, intensity, and landfall location. Finally, future

studies might evaluate forecasts of greater than 7 days

using time windows greater than 24h, which could yield

greater skill than the values reported here.
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