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ABSTRACT

A recent study presented nearly two decades of airborne atmospheric river (AR) observations and con-

cluded that, on average, an individualAR transports;53 108 kg s21 of water vapor. The study here compares

those cases to ARs independently identified in reanalyses based on a refined algorithm that can detect less

well-structured ARs, with the dual-purpose of validating reanalysis ARs against observations and evaluating

dropsonde representativeness relative to reanalyses. The first comparison is based on 21 dropsonde-observed

ARs in the northeastern Pacific and those closely matched, but not required to be exactly collocated, in ERA-

Interim (MERRA-2), which indicates a mean error of 22% (28%) in AR width and 13% (21%) in total

integrated water vapor transport (TIVT) and supports the effectiveness of the AR detection algorithm ap-

plied to the reanalyses. The second comparison is between the 21 dropsondeARs and;6000ARs detected in

ERA-Interim (MERRA-2) over the same domain, which indicates a mean difference of 5% (20%) in AR

width and 5% (14%) in TIVT and suggests the limited number of dropsonde observations is a highly (rea-

sonably) representative sampling of ARs in the northeastern Pacific. Sensitivities of the comparison to sea-

sonal and geographical variations in AR width/TIVT are also examined. The results provide a case where

dedicated observational efforts in specific regions corroborate with global reanalyses in better characterizing

the geometry and strength of ARs regionally and globally. The results also illustrate that the reanalysis

depiction of ARs can help inform the selection of locations for future observational and modeling efforts.

1. Introduction

Characterized by enhanced water vapor transport in long

and narrow corridors in the lower troposphere, atmospheric

rivers (ARs) play important roles in the global water cycle

(Zhu and Newell 1998) and deliver precious freshwater to

many arid/semiarid regions (Guan et al. 2010; Dettinger

et al. 2011; Rutz and Steenburgh 2012), but they can also

represent a significant hazard around the globe due to the

associated extremewind andprecipitation (e.g.,Waliser and

Guan 2017). The phenomenology, characteristics, and pro-

cesses of ARs have been the focus of a rapidly increasing

volume of observing, modeling, theoretical, and application

studies in the past decade (Ralph et al. 2017a). The devel-

opment of AR science has led to the convergence of a

formal definition of an AR recently included into the

American Meteorological Society’s Glossary of Meteorol-

ogy (American Meteorological Society 2017).

Reflective of the overall definition but often empha-

sizing different aspects of the phenomenon, a number ofCorresponding author: Bin Guan, bin.guan@jpl.nasa.gov
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techniques have been previously developed for objec-

tive identification of ARs. For example, the technique

based on the integrated water vapor (IWV) signature

of ARs was developed associated with the availability

of high-quality satellite retrievals of IWV over the

northeastern Pacific (Ralph et al. 2004; Neiman et al.

2008; Wick et al. 2013). The technique based on point

observations of IWV and surface wind was designed to

best take advantage of high-resolution in situ obser-

vations from a limited number of coastal stations

(Neiman et al. 2009; Ralph et al. 2013). More recent

techniques often make use of integrated water vapor

transport (IVT), a variable more directly related to

orographic precipitation (Neiman et al. 2002; Neiman

et al. 2009) and useful for understanding the role of

ARs in the global water cycle (Zhu and Newell 1998).

A recent study by Ralph et al. (2017b) introduced the

concept of total IVT (TIVT), which represents the total

along-AR horizontal water vapor flux through a cross

section perpendicular to an AR (analogous to the

streamflow in a terrestrial river). The dataset used by

Ralph et al. (2017b) had been collected using four types

of research aircraft in a series of 37 research flights over

nearly 20 years (Ralph et al. 2004, 2011, 2016; Neiman

et al. 2014), of which 30 flights were conducted during

the CalWater program of field studies. Ralph et al.

(2017b) concluded that on average an individual AR

transports horizontally roughly 5 3 108 kg s21 of water

(as vapor), which is comparable to 27 times the dis-

charge of water (as liquid) by the Mississippi River into

the Gulf of Mexico. However, because the study had

‘‘only’’ 21 cases, a question remained as to how repre-

sentative these cases are of ARs more globally.

The current study takes advantage of this un-

precedented set of airborne observations by conducting

an intercomparison of key AR characteristics calculated

from the dropsonde-observedARs andARs in reanalysis

products independently identified and measured based

on different methodologies. For the dropsonde observa-

tions, the AR identification procedure is specific to the

manner in which these observations were taken, that is,

along transects across theARs that attempt to sample the

center part of ARs (Ralph et al. 2017b). For reanalyses,

AR identification is based on applying a global AR de-

tection algorithm that considers the 2D geometry of ARs

(Guan andWaliser 2015, hereafterGW2015), providing a

more complete spatiotemporal sampling than dropsondes

but at the expense of some reliance on a model via data

assimilation. The need for validating reanalysis-based

AR characteristics against field observations and for

understanding the representativeness of the available

field observations motivates the current intercompari-

son study. Such two-way comparisons have not been

conducted in previous AR studies. The two AR charac-

teristics of interest here are AR width and TIVT across

the AR width. Specifically, the objectives of the current

study are 1) to validate the GW2015 global AR detection

algorithm (with a few refinements to be detailed in sec-

tion 2a) against dropsonde observations in terms of the

above two AR characteristics; 2) to evaluate the repre-

sentativeness of the two AR measures calculated from

the limited number of dropsonde-observed ARs relative

to all ARs detected by the GW2015 algorithm in re-

analysis products; and 3) within this context, to exam-

ine seasonal and geographical variations in the two

AR measures, first regionally, then globally.

2. Data and methodology

a. Reanalyses and AR detection

Global fields of specific humidity and vector winds are

provided by two reanalysis products, namely, the Euro-

pean Centre for Medium-Range Weather Forecasts

(ECMWF) interim reanalysis (ERA-Interim; Dee et al.

2011) and the National Aeronautics and Space Admin-

istration (NASA) Modern-Era Retrospective Analysis

for Research and Applications, version 2 (MERRA-2;

Gelaro et al. 2017). Comparison between the two prod-

ucts provides an estimate of the reanalysis uncertainty

where appropriate. ERA-Interim data at 1.58 3 1.58
horizontal resolution are obtained at 17 pressure levels,

and MERRA-2 data at 0.6258 3 0.58 resolution are ob-

tained at 21 pressure levels, between 1000 and 300hPa.

Six-hourly fields during the period of 1979–2016 (for

ERA-Interim) or 1980–2016 (for MERRA-2) are used

for the calculation of IVT and AR detection. Both ERA-

Interim and the original version of MERRA compared

well with aircraft observations of six northeastern Pacific

ARs (Ralph et al. 2012) and 15 years of satellite obser-

vations of AR landfalls along the U.S. West Coast

(Jackson et al. 2016) in terms of basic AR character-

istics. Zonal and meridional components of IVT are

calculated as

IVT
x
52

1

g

ð ​
uq dp and (1a)

IVT
y
52

1

g

ð ​
yq dp , (1b)

where g is gravitational acceleration, u is zonal wind, y is

meridional wind, q is specific humidity, p is pressure, and

the integration is over all pressure levels between 1000

and 300 hPa.

An IVT-based AR detection algorithm was in-

troduced in GW2015, which was designed for ‘‘tracking

ARs globally as elongated targets’’ (tARget version 1).
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The algorithm considers a combination of geometry and

intensity thresholds in identifying the spatial distribution

of ARs at any given time. The initial set of ‘‘objects’’ (i.e.,

contiguous area of connected pixels) is extracted based

on the IVT magnitude threshold (the 85th percentile

with a fixed lower limit of 100kgm21 s21) specific to each

location and season. These objects are then filtered based

on requirements on IVT direction (within 458 of the AR

shape orientation and with an appreciable poleward

component), length (.2000km), and length/width ratio

(.2), resulting in a defined set of ARs. Initial evaluation

of the algorithm indicated reasonable agreement with

Zhu and Newell (1998) in terms of AR fractional zonal

circumference and fractional total meridional IVT and

over ;90% agreement in detected AR landfall dates

compared to other algorithms independently developed

in three previous studies that focused on ARs in three

regions with different climatologies.

A revised version of the algorithm, hereafter tARget

version 2, is used in the current study, which contains

refinements in three aspects. First, multiple, sequentially

higher IVT percentile thresholds (i.e., 85th–95th per-

centiles), as opposed to only the 85th percentile, are

used for AR detection. This is in view of the cases where

an IVT object determined by the 85th percentile does

not meet the AR requirements (e.g., too ‘‘fat’’ or oth-

erwise less well structured), but a core region with

higher IVT exists within the object that does meet the

AR requirements by itself. A similar concept was used in

Wick et al. (2013) in their AR detection algorithm based

on IWV, where a series of IWV thresholds between 20

and 40mm was used for AR detection. In implementing

the multiple IVT thresholds, each map of IVT is first

scanned with the 85th percentile threshold, and all the

grid cells where ARs are detected are zeroed out from the

map. The map is then rescanned with the 87.5th percentile

threshold, and any newARs detected are zeroed out from

the current IVT map. The process is repeated five times

until the 95th percentile threshold is applied. The use of

multiple thresholds resulted in a 17% increase in the

number of detected AR objects based on assessment with

ERA-Interim. An example of a ‘‘new’’ AR, that is, de-

tected here but not in GW2015, is shown in red in Fig. 1a.

Second, the ARs detected from the steps described

above are further filtered for circular-shaped objects that

are potentially tropical cyclones. The length/width ratio

requirement (.2) implemented in the original version of

the algorithm already filters out most of these round

objects, but occasionally fails when an object is less reg-

ularly shaped. The new filter makes use of a robust

characterization of the roundness of the object based on

the ‘‘solidity’’ property (.0.8) combined with the ratio

between the lengths of the minor and the major axes of a

fitted ellipse (.0.8). This filter is applied to objects with

centroids equatorward of 308, where most tropical cy-

clones occur and where the distortion of an object shape

due to the ‘‘lat–lon’’ map projection (commonly used by

global geophysical datasets) isminimal. The filter leads to

only a 0.2% reduction in the number of detected AR

objects based on assessment with ERA-Interim. Note this

roundness filter (and the length/width ratio requirement)

does not aim to filter out all ARs potentially related to

tropical cyclones, but only thosewell-shaped features that

are most likely tropical cyclones themselves.

The third refinement to the algorithm is the identifi-

cation of the AR transect that goes through the centroid

of the AR in the direction perpendicular to the mean

IVT averaged within the AR shape boundary (Fig. 1b,

black). The AR transect width (hereafter, AR width for

simplicity) and TIVT across the transect are also in-

cluded in the output, with TIVT calculated as

TIVT5

ð ​
IVT

transect
dw , (2)

where IVTtransect is the component of IVT normal to the

AR transect, and the integration is over all pixels that

form the AR transect. The enhanced output facilitates

comparisons with observations from dropsondes, which

are often released along transects that go through the

core section of ARs (Ralph et al. 2004, 2011; Neiman

et al. 2014). Although not examined here, transects

across other sectors of an AR (such as the landfall lo-

cation) are also worthy of investigation to help un-

derstand variations along the AR axis.

b. Dropsonde observations

Dropsonde observations along 21 AR transects were

reported in Ralph et al. (2017b). The observations were

among those made during various campaigns in 1998–

2016 that focused on ARs in the northeastern Pacific of

importance to weather and hydrology in the western

United States. Each AR was transected by at least nine

dropsondes. The upper limit of the vertical profiles

varies between dropsondes, which may affect the com-

parison of the calculated IVT values. However, the im-

pact is expected to be small as the layer between the

surface and 500 hPa, where the vast majority of water

vapor is contained, is consistently sampled in all cases

with no vertical gaps exceeding 50hPa. To calculate the

width and TIVT across the transects, the AR boundary

is determined by the following conditions, which differ

from those used in the tARget algorithm as described

earlier: IVT magnitude greater than 250 kgm21 s21 at a

minimum of three interior dropsonde locations and IVT

magnitude less than 250 kgm21 s21 at both ends of the
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transect. Some of the 21 cases do not strictly meet all of

these criteria (usually because the transect did not go far

enough equatorward to intersect the southern edge of

the AR), but were nonetheless included in Ralph et al.

(2017b) for the benefit of having more samples for the

analysis, as are in the current study.

3. Results

a. Global AR frequency and precipitation

A detailed description of the global climatology of

ARs, including frequency, geometry, intensity, sea-

sonality, and climate modulations, was provided in

GW2015. The discussion here focuses on the difference/

similarity between the two versions of the tARget algorithm

with respect to two quantities, namely, AR frequency and

precipitation, which are among the most fundamental

characteristics of ARs of relevance to their roles in the

global water cycle. Daily precipitation from the 18 3 18
resolution Global Precipitation Climatology Project

(GPCP) version 1.2 (Huffman et al. 2001), regridded to the

ERA-Interim resolution, is used for this part of the analysis.

Shown in Fig. 2a is the global distribution of AR fre-

quency during 1979–2016 based on ERA-Interim and

tARget version 2. AR frequency is calculated at each

grid cell as the percentage of time steps during which the

FIG. 1. (a) Example output from the AR detection algorithm, showing ARs detected at an

arbitrary 6-h time step of the ERA-Interim reanalysis. Each color indicates a unique AR. The

algorithm, tARget version 2, is a refinement of the original version introduced in GW2015; see

text for details. The AR in red is ‘‘new’’ compared to those shown in Fig. 2 of GW2015 as a result

of using multiple, sequentially higher IVT thresholds (i.e., 85th–95th percentiles) for AR de-

tection. The two black boxes mark the domains used in subsequent analysis. (b) A specific AR

from (a), showing the location of theAR transect (black), the width, and TIVTacross the transect

(numbers in the upper left of the panel), along with other key output from the algorithm (see

legend). Also shown are IVT vectors (kgm21 s21; gray arrows; not shown if the magnitude is

smaller than 100 kgm21 s21) and magnitudes (color shading) associated with the AR. The AR

transect is defined as the great-circle arc that goes through the centroid of theAR in the direction

perpendicular to the mean IVT averaged within the AR shape boundary (green).
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grid cell is within any detected AR shape boundary.

The overall pattern is characterized by enhanced AR

frequencies in midlatitude ocean basins relative to in-

land and lower/higher-latitude regions, with multiple

action centers located in the extratropical North Pacific/

Atlantic, southeastern Pacific, South Atlantic, and

southern Indian Ocean. The broad pattern is similar to

Fig. 2b produced from tARget version 1, although AR

frequency is notably increased based on the newer

detection, especially around the various action centers.

The increase in AR frequency is a result of using

multiple IVT thresholds for AR detection, which

overwhelms the tiny reduction in the number of ARs

detected due to the filter for potential tropical cyclones,

as also mentioned in section 2.

The net increase in AR frequency between the two

versions of the detection is shown in Fig. 2c (the values

are straight differences between Figs. 2a and 2b, not

relative differences). In many regions outside the

tropics, the increase is around 0.6%–0.9%, or 2–3 more

AR days per year. Larger increases are seen in some

tropical/subtropical regions, including southern North

America into the Caribbean, central South America,

northwest Africa, South/Southeast Asia, and Australia

into French Polynesia. Most of these larger increases are

located over land, suggesting an IVT threshold higher

than the 85th percentile can be particularly effective for

detecting ARs over land. No place shows a net decrease

in AR frequency between the two versions.

Mean AR precipitation intensity averaged over each

of the three groups of ARs in Figs. 2a–c is shown in

Figs. 2d–f. At each grid cell, mean AR precipitation is

independently calculated based on averaging over the

time steps during which the grid cell is within the

FIG. 2. (a)–(c) The percentage of AR time steps out of all time steps in ERA-Interim based on three groups:

(a) all ARs detected using tARget version 2, (b) only thoseARs detected using tARget version 1, and (c) only those

ARs newly detected by tARget version 2. The percentage values in (b) and (c) add up to the percentage values in

(a). Note the different scale in (c). (d)–(f) Mean AR precipitation intensity (mmday21) averaged over the three

groups of ARs shown in (a)–(c). White shading indicates regions with no detected ARs during the analysis period.

Precipitation data are from GPCP version 1.2.
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detected AR shape boundary. Note that, unlike in the

left column, the lower two panels in the right column are

not additive as they represent intensities instead of

summations. Largely similar to AR frequency, AR

precipitation is enhanced in the extratropical ocean

basins (Fig. 2d). In addition, large values are seen in the

intertropical convergence zone, Indo-Pacific warm pool,

and tropical North Atlantic, where ARs occur much less

frequently compared to extratropical ocean basins

(Fig. 2a). The structure of ARs in the tropical regions is

only starting to be understood (GW2015; Yang et al.

2018), and AR precipitation in these regions could po-

tentially include contributions from phenomena that

have been differently named in the literature. For ex-

ample, the three flood-producing ‘‘tropical plume’’

events in coastal northwestAfrica analyzed inKnippertz

and Martin (2005) are all detected as ARs in the current

study, as they are in the regional AR archive in-

dependently developed by Brands et al. (2017; http://

www.meteo.unican.es/es/atmospheric-rivers). Compari-

son between Figs. 2e and 2f suggests that the ‘‘new’’ ARs

that were not detected by the original algorithm are as

precipitating as the ‘‘old’’ ARs. The analysis in Fig. 2

suggests that the use of multiple IVT percentile thresh-

olds, given the other requirements on geometry, is an

effective way to detect additional ARs that have pre-

cipitation characteristics similar to other ARs but that

can go undetected due to not meeting the geometry

requirements when a single IVT percentile threshold

is used.

b. AR transects in northeastern Pacific

The 21 dropsonde-observedAR transects (individually

shown in Ralph et al. 2017b) correspond to 20 ERA-

Interim reanalysis ARs based on searching the 6-h step of

ERA-Interim that has an AR in the vicinity of the

dropsonde transect and closest in time to the midpoint

of the transect (Fig. 3). Two of the dropsonde transects

(18 and 19) were close enough in time to correspond to

the same reanalysis time step. In two cases, the ob-

served AR is only detected by the revised algorithm

(panels outlined in green), exemplifying the effective-

ness of utilizing multiple IVT thresholds for AR de-

tection. Various types of ARs are sampled, including

landfalling versus offshore ARs, those centered in the

subtropics versus midlatitudes, and long-and-narrow

versus less-well-elongated ARs. Nineteen out of the

21 dropsonde transects have a matching reanalysis

AR within 63 h (i.e., within the temporal resolution

of ERA-Interim). Two dropsonde transects have a

matching reanalysis AR 12.6 and 9.7 h earlier, re-

spectively. In 10 cases, the dropsonde and reanalysis

transects are relatively close to each other in terms of

location. The location differences in other cases are

partly attributable to the different data sources and

methods used for AR detection, and the timing dif-

ference between dropsonde and reanalysis, during

which an AR can propagate in space and/or change in

structure.

Comparison of AR widths based on dropsonde ob-

servations versus ERA-Interim reanalysis is shown in

the scatterplot in Fig. 4a. Each circle represents one pair

of dropsonde and reanalysis transects as shown in Fig. 3.

Overall, the two sets of AR widths are well correlated,

with a correlation coefficient of 0.60 (p 5 0.004). The

circles are reasonably distributed on both sides of the 1:1

line (black), indicating no systematic biases in the

reanalysis-based results relative to dropsonde observa-

tions. The blue and red error bars indicate one standard

deviation below/above the mean (where the two error

bars cross). The reanalysis- and dropsonde-based results

have very close mean values (see also the two dashed

lines in Fig. 4c), although the former has a slightly larger

standard deviation. A similar comparison for TIVT is

shown in Fig. 4b. The agreement there is even better

than in the case of ARwidth, with a stronger correlation

coefficient of 0.80 (p , 0.001) and very close mean

values and standard deviations. The better agreement in

the case of TIVT is likely because the integrated value is

dominated by stronger IVT values toward the center of

the AR and therefore is not sensitive to small errors in

the width of the identified AR transect. The three cases

with the best space–time coincidence between drop-

sonde and reanalysis AR transects (green circles in

Figs. 4a,b; numbers 5, 8, and 12 in Fig. 3) are among the

cases, but not the only cases, with the best agreement in

AR width and TIVT (i.e., circles located close to the 1:1

line), suggesting the comparison between the two sets of

ARs is affected by, but not solely dependent on, the

space–time coincidence. This is because the dropsonde

observation and the reanalysis both independently aim

to transect the core part of the AR based on what they

respectively find to bewhere the core part is. In this sense,

the manner of the comparison here is somewhat analo-

gous to object-based forecast verification (Gilleland et al.

2009), where the lack of space–time coincidence between

the forecast and target objects is not unduly penalized

as long as the overall structure (e.g., shape, size) of the

target system is reasonably captured. As such, the

error statistics reported in this study should not be

interpreted as reanalysis errors in the traditional

sense, but more appropriately as errors in the AR

‘‘objects’’ tied to both the raw reanalysis data and the

associated AR detection algorithm. Figures 4a and 4b

indicate the AR detection algorithm, specifically the

identification of AR transects, validates remarkably
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FIG. 3. The 20 ERA-Interim reanalysis ARs corresponding to the 21 dropsonde-observed AR transects. The numbering of the transect

indicated in the top left of each panel is as in Ralph et al. (2017b). Shown in each case is the 6-h step (also indicated in the top left of each

panel) of the reanalysis AR (IVT magnitude in shading; kgm21 s21; transect in red) closest in time to the midpoint of the dropsonde

transect (blue). Two of the 21 dropsonde transects (18 and 19) correspond to the same 6-h step of the reanalysis AR (third panel in the last

column). Also indicated in each panel is the time difference (h) between the closest 6-h step of the reanalysis and the midpoint of the

dropsonde transect (as a representation of the observation time), with positive/negative signs representing whether the reanalysis lags/

leads the observation. Panels outlined in green show ‘‘new’’ ARs detected by tARget version 2 compared to the original version.
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well against dropsonde observations, with a relative er-

ror of only 22% (13%) for mean width (TIVT).

The results above are put into context by further

comparing statistics based on the 21AR transects versus

all ARs in ERA-Interim that were detected in the

northeastern Pacific (AR centroids within 238–46.48N,

163.48–124.68W) from 15 January to 25 March of

1979–2016. The domain and the combination of days are

selected to be just enough to encompass the location and

time of the 21 AR transects analyzed earlier to facilitate

comparisons. A total of 5636 reanalysis ARs are se-

lected, based on which the probability distributions of

AR widths and TIVT are obtained. Both AR width and

TIVT are characteristic of a lognormal distribution

with a longer right tail (Figs. 4c,d, gray). The mean

values based on the entire population (red solid) com-

pare well with the mean values based on only the subset

of reanalysis ARs that correspond to 21 dropsonde ARs

FIG. 4. (a) Scatterplot showingARwidths (km) based on dropsonde observations vs ERA-Interim reanalysis; see

Fig. 3 for the time and location of each transect. The three cases with the best space–time coincidence between

dropsonde and reanalysis AR transects (5, 8, and 12 in Fig. 3) are shown in green. The 1:1 line is in black. The

correlation coefficient between the two sets of AR widths is shown, along with the p value. Blue and red error bars

indicate one standard deviation below/above the mean (where the two error bars cross). (b) As in (a), but for TIVT

(108 kg s21) across AR transects. (c) Histogram of AR widths based on all ARs detected in ERA-Interim over the

northeastern Pacific (AR centroids within 238–46.48N, 163.48–124.68W) from 15 Jan to 25 Mar of 1979–2016 (gray

bars). Also shown are the mean AR width (km) based on all reanalysis ARs that contributed to the histogram (red

solid), the subset of the reanalysis ARs that corresponds to the 21 dropsonde transects (red dashed), and the

observed value based on the 21 dropsonde transects as reported in Ralph et al. (2017b) (blue dashed line for the

mean and blue circles for individual transects). The mean AR width value is also indicated in the figure legend for

each sample. Red shading indicates the 95% confidence interval of the mean reanalysis AR width for a random

21-member sample drawn from the pool of reanalysis ARs based on 10 000 iterations. The error bar centered on the

blue dashed line indicates the 95% confidence interval of the difference between the blue and red dashed lines

based on a two-tailed, paired t-test. (d) As in (c), but for TIVT (108 kg s21) across AR transects.
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(red dashed). The red shading shows the sampling var-

iations in mean AR width and TIVT based on randomly

selecting 21 ARs from the pool of all reanalysis ARs

within the domain and time period, repeating for 10 000

times, and finding the 2.5nd and 97.5th percentiles based

on the empirical distributions obtained for mean AR

width and TIVT. The result that the red dashed lines

are close to the red solid line and well within the red

shading for both AR width and TIVT supports that the

21-member subset is a highly representative sampling of

the entire population of ARs within the given domain

and time period.

For AR width, the dropsonde-based mean value

(Fig. 4c, blue dashed) is only slightly larger than the

reanalysis counterpart (red dashed), as already seen in

Fig. 4a. The error bar centered on the blue dashed line

indicates the 95% confidence interval of the difference

between the blue and red dashed lines for doing a two-

tailed, paired t test. A paired t test is used since the two

samples intend to characterize the same set ofARs. That

the red dashed line is located well within the error bar

suggests the difference between the two dashed lines is

highly insignificant statistically.Moreover, the dropsonde-

based mean value (blue dashed) well reflects the mean

value based on a total of 5636 reanalysis AR transects

(red solid), with a relative difference of 5%. Similar

results can be seen for TIVT, also with a 5% relative

difference. A reasonable range of AR width and TIVT

values were sampled by individual dropsonde transects

(blue circles) compared to the reanalysis-based full

distributions (gray bars). Specifically, the minimum and

maximum dropsonde-sampled AR widths (TIVT) are

within the bottom 7% and top 11% (bottom 3% and top

6%) of the full distribution. Figures 4c and 4d suggest

that the 21 dropsonde AR transects, although a rela-

tively small sample, were able to characterize the mean

width and TIVT very well compared to the much more

spatiotemporally complete sampling by the ERA-

Interim reanalysis.

Similar comparisons are done between dropsondes

and MERRA-2. As in the case of ERA-Interim, the 21

dropsonde ARs are matched to 20 MERRA-2 ARs due

to two temporally close dropsonde ARs matched to one

reanalysis time step (Fig. 5). Nineteen of theMERRA-2

ARs are identified at the same 6-hourly time steps as the

ERA-Interim ARs examined earlier. In the only one

exception (number 4), the MERRA-2 AR is identified

later than the corresponding ERA-Interim AR by 6h.

Eighteen out of the 21 dropsonde transects have a

matching MERRA-2 AR within 63 h (i.e., within the

temporal resolution of MERRA-2). The general good

agreement with dropsondes discussed earlier for ERA-

Interim is also seen for MERRA-2 (Figs. 6a,b), with a

correlation of 0.61 (p 5 0.003) for AR width, 0.85 for

TIVT (p, 0.001), and a relative error of28% for mean

width and 21% for mean TIVT.

The somewhat large (but statistically insignificant at

the 95% level as indicated by the location of the red

dashed line relative to the blue error bar in Fig. 6c)

negative bias in MERRA-2 AR width relative to drop-

sondes (Fig. 6a) is consistent with the overall smallerAR

width in the full distribution compared to ERA-Interim

(comparing Fig. 6c to Fig. 4c, red solid). In general,

MERRA-2 has a larger fraction of ARs with smaller

width, and a smaller fraction of ARs with larger width

(comparing Fig. 6c to Fig. 4c, gray). Specifically,

MERRA-2 contains a considerable fraction of ARs with

width smaller than 300 km, whereas such extremely

narrow ARs are much rarer in ERA-Interim. This dif-

ference in the distributions may be contributed by the

same observed ARs being detected in both products

except with smaller widths in MERRA-2, but also by

some of the narrow ARs that are only detected in

MERRA-2. The overall smaller AR width in MERRA-2

relative to ERA-Interim has been found in Guan and

Waliser (2017) on a global basis, where it was suggested

to be associated with the native resolution of the dy-

namical models based on a systematic examination of 24

global weather/climate models and three reanalysis

products—all with data archived on a common grid. In

this regard, smallerARwidth inMERRA-2 is consistent

with its native resolution (0.6258 3 0.58) being slightly

finer than that of ERA-Interim (T255,;79km). Unlike

AR width, TIVT in MERRA-2 shows little bias relative

to dropsondes (Fig. 6b), conceivably because of the

same reason as discussed earlier, that TIVT is domi-

nated by stronger IVT values toward the center of the

AR and therefore is not sensitive to reasonable errors in

the width of the identified AR transect.

The representativeness of the 21 dropsonde ARs

relative to the total of 6077 MERRA-2 ARs from

15 January to 25 March of 1980–2016 is then assessed.

Although the relative differences (20% for AR width

and 14% for TIVT) are notably larger than in the case

where ERA-Interim is used as the reference, the sig-

nificance tests (that the blue dashed line is located

within the red shading in Figs. 6c,d) still support the 21

dropsonde transects to be consistent with a reason-

able—albeit not highly representative—sample from

the entire population of MERRA-2 ARs.

c. Sensitivity to analysis domain and period

As mentioned earlier, the domain used for calculating

the reanalysis-based AR statistics was intended to be

representative of the location of the 21 dropsonde AR

transects in the northeastern Pacific. Specifically, the
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domain used was of just enough size to encompass

the centroids of the observed ARs. The location of

the analysis domain is now perturbed to understand the

sensitivity of theAR statistics to the exact location of the

selected domain, hence the robustness of the reanalysis-

based statistics presented earlier. In doing so, the

domain used in the ‘‘control’’ analysis (238–46.48N,

163.48–124.68W) is shifted in each of the four directions

FIG. 5. As in Fig. 3, but with the reanalysis being MERRA-2.
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(east/west/north/south) by 68. The number of degrees to

shift is selected to be just large enough to illustrate the

sensitivity, but not so large as to change the overall

geographical characteristic of the domain. The proba-

bility distributions and the means of AR width and

TIVT are then recalculated, shown in Figs. 7a–d. The

following discussion applies to both ERA-Interim and

MERRA-2, except that mean AR width and TIVT are

consistently smaller in MERRA-2 as noted earlier. The

analysis suggests that AR width has little sensitivity to

small variations in the east/west location of the analysis

domain, but some sensitivity when the domain is shifted

in the north/south direction (Figs. 7a,c). Specifically,

northward (southward) shifting of the domain leads to a

shifting of the probability distribution toward the left

(right), hence a reduction (increase) in the mean AR

width. Unlike the directional contrast in the case of

width, TIVT exhibits comparable, and relatively small,

sensitivities to both north/south and east/west shifting of

the analysis domain (Figs. 7b,d). Similar sensitivity

analysis is done based on breaking the period used in the

control (1979–2016) into two subperiods of equal length,

with the latter subperiod assimilating substantially more

satellite observations in the reanalyses (Dee et al. 2011;

Gelaro et al. 2017).MeanARwidth is somewhat smaller

in the second half-period than in the first half-period,

whereas little sensitivity to analysis period is seen in the

case of TIVT (Figs. 7e,f). The sensitivity analysis here

indicates that, out of the six cases considered, the largest

sensitivity is associated with AR width with respect to

latitudinal location of the analysis domain. In all cases

examined, the sensitivity is not unduly large to prevent

meaningful comparison of the AR width and TIVT

statistics presented in the previous subsection.

d. Seasonal and geographical variations

The main analysis above focused on ARs in the

northeastern Pacific and during the winter season. Sea-

sonal and geographical dependence of the results are

now examined for each of the four seasons and for two

representative domains. The northeastern Pacific do-

main is the same one used in the main analysis, and the

FIG. 6. As in Fig. 4, but with the reanalysis being MERRA-2.
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southeastern Pacific domain is of the same size and is

placed offshore of South America, where ARs fre-

quently make landfalls, to mimic its northern counter-

part (see the two boxes in Fig. 1a). ARs in both regions

have been shown to be hydrologically important, with

enhanced activities during their respective winter sea-

sons (e.g., Dettinger et al. 2011; Viale and Nuñez 2011).
In both regions, AR width and TIVT are character-

istic of a lognormal distribution with a longer right tail,

with seasonal and geographical variations in the shape of

the distribution and the associated mean value (Fig. 8).

For the northeastern Pacific, ARwidth tends to have the

largest (smallest) values in winter (summer), and in-

termediate values in spring and fall (Fig. 8a). Seasonal

contrast in TIVT is largely between the two extended

cold and warm seasons, with notably larger TIVT values

in fall and winter (Fig. 8b). The contrasts are consistent

with the seasonal variations in AR frequency and in-

tensity in this region (GW2015). Seasonal variations are

in general smaller in the southeastern Pacific for both

AR width and TIVT (Figs. 8c,d). Relatively weak sea-

sonality in AR width and TIVT in the southeastern

Pacific is consistent with weaker seasonality in AR fre-

quency and intensity in this region compared to the

northeastern Pacific (GW2015). The discussion above

applies to both ERA-Interim and MERRA-2, except

that mean AR width and TIVT are consistently smaller

in MERRA-2 in the two regions examined, as noted

earlier for northeastern Pacific.

A similar examination of the seasonal and geo-

graphical variations in AR width and TIVT is done

globally and shown in Fig. 9 (ERA-Interim) and Fig. 10

(MERRA-2). At each grid cell, the value represents an

average over the ARs that have centroids located at that

grid cell, calculated separately for the four seasons. To

facilitate comparison, a 1.58 3 1.58 grid is used for both

ERA-Interim and MERRA-2 for binning the AR cen-

troids. The following discussion applies to both products,

except that mean AR width and TIVT are consistently

smaller in MERRA-2 compared to ERA-Interim across

FIG. 7. (a),(b) Sensitivity of (left) AR width (km) and (right) TIVT (108 kg s21) to zonal location of the analysis

domain based on shifting the domain used in Figs. 4 and 6, the control, by 68 to the east/west. Curves and vertical

lines show the histograms and the means, respectively, based on ERA-Interim. The plus signs indicate the means

based onMERRA-2. (c),(d)As in (a) and (b), but for sensitivity to meridional location. (e),(f) As in (a) and (b), but

for sensitivity to analysis period based on breaking the period used in the control into two subperiods with

equal length.
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the globe, as noted earlier for two eastern Pacific re-

gions. AR centroids are rarely located in the tropical and

polar areas and some continental interiors, as indicated

by the white shading. In general, the largest AR width

tends to occur in the subtropical ocean basins. LargeAR

width also occurs in some land areas during specific

seasons, including in southwestern North America,

northwestern Africa, and Australia during December–

February, and in South Asia during July–August. The

largest TIVT also tends to occur in the subtropics, but in

regions somewhat different from the case of AR width.

Specifically, the largest TIVTs are seen in the western/

central North Pacific and western North/South Atlantic

in December–February and near the south/east coast of

Asia and in the South Pacific during July–August.

4. Conclusions

A unique intercomparison is conducted between

dropsonde-observed ARs and ARs in reanalysis prod-

ucts independently identified and measured based on

different methodologies. The dropsonde observations

are along 21 AR transects over the northeastern Pacific

(Ralph et al. 2017b). The two reanalysis products con-

sidered (ERA-Interim and MERRA-2) each contain

;6000 ARs detected during 1979–2016 (for ERA-

Interim) or 1980–2016 (for MERRA-2) over the do-

main and a combination of days that encompass the

dropsonde observations. AR identification is based on a

fixed IVT threshold of 250kgm21 s21 for the dropsonde

observations and seasonally and geographically de-

pendent IVT thresholds, that is, the 85th–95th percen-

tiles, for the reanalyses. The global AR detection

algorithm applied to the reanalyses, tARget version 2,

is a refinement of the original version introduced in

GW2015. The new version implements multiple IVT

percentile thresholds for more effective AR detection

(e.g., Fig. 3, panels with green outline), and a roundness

filter for potential tropical cyclones, which respectively

increased (decreased) the number of detected AR ob-

jects by 17% (0.2%) based on assessment with ERA-

Interim.

The characteristics compared here are theARwidth and

TIVT, a parameter introduced recently (Ralph et al. 2017b)

FIG. 8. Seasonal (see legend) and geographical variations in AR width (km) and TIVT (108 kg s21): (a),

(b) northeastern Pacific and (c),(d) southeastern Pacific. The two domains are outlined in Fig. 1a. Curves and

vertical lines show the histograms and the means, respectively, based on ERA-Interim. The plus signs indicate the

means based on MERRA-2.
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representing the total horizontal transport of water

vapor along an AR through a cross section normal to

the AR. These parameters are calculated from the

dropsonde-observed and reanalysis ARs and are in-

tercompared. The first comparison is based solely on

the 21 dropsonde ARs and 20 reanalysis ARs that

match the overall time and location of the dropsonde

transects (two of the dropsonde ARs correspond to the

same reanalysis AR), with the purpose of validating

ARs detected in the reanalyses against field observa-

tions. Of the 21 dropsonde-observedARs, 19 (18) have a

correspondingARdetected inERA-Interim (MERRA-2)

within 63h (Figs. 3, 5). Comparison of ERA-Interim

(MERRA-2)ARs relative to dropsondeARs indicates a

FIG. 9. Global distribution of mean AR width (km) and TIVT (108 kg s21) for each of the four seasons based on

ERA-Interim. At each grid cell, the value is based on averaging over the ARs with centroids located at that

grid cell.
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relative error of 22% (28%) for mean AR width,

and 13% (21%) for mean TIVT (Figs. 4a, 4b, 6a, 6b),

which supports the effectiveness of the global AR de-

tection algorithm in detecting winter ARs over the

northeastern Pacific and the reanalyses for their repre-

sentation of the AR width and TIVT values.

The other comparison is between the 21 dropsonde

ARs and the total of ;6000 ARs in each reanalysis

product that represent a more complete spatiotemporal

sampling of winter ARs over the northeastern Pacific,

with the purpose of evaluating the representativeness of

AR statistics derived from the limited number of drop-

sonde observations relative to the reanalyses. The

comparison indicates a 5% relative difference for

dropsonde-observedmeanARwidth and TIVT over the

21 transects relative to the total of;6000 ERA-Interim

FIG. 10. As in Fig. 9, but based on MERRA-2. The coarser ERA-Interim grid is used for binning the AR centroids

to facilitate comparison.
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ARs (Figs. 4c,d), suggesting that the limited number of

dropsonde observations over the northeastern Pacific

is a highly representative sampling of the entire pop-

ulation of ARs depicted by ERA-Interim. The relative

difference is larger (20% for AR width and 14% for

TIVT) but statistically insignificant when comparing the

21 dropsondeARs to the;6000MERRA-2ARs, due to

the presence of considerably more ARs with smaller

width and TIVT in MERRA-2 compared to ERA-

Interim. Sensitivity analysis supports the robustness of

the above comparisons, especially for TIVT, which ex-

hibits smaller sensitivity thanARwidth to perturbations

in analysis domain and period.

AR width and TIVT have considerable seasonal and

geographical variations. For both variables, the largest

values tend to occur in the subtropics, although focused

in somewhat different locations. Large AR width can

also occur in some land areas during specific seasons—

not the case for TIVT, for which the largest values sel-

dom occur over land. Close examination of two offshore

boxes over the northeastern Pacific and southeastern

Pacific suggests that ARs tend to have larger width and

TIVT during the region’s respective cold season, and

that between the two regions, larger seasonal contrasts

exist in the northeastern Pacific.

The results presented in this paper provide a case

where dedicated observational efforts in specific regions

corroborate with global reanalysis products in better

characterizing the geometry and strength of ARs re-

gionally and over the globe, highlighting the value of

dedicated observational efforts for benchmarking AR

characteristics derived from more spatiotemporally

complete data products—albeit with their own short-

comings, such as those from satellites, reanalysis, and

model simulations. The global distributions of ARwidth

and TIVT could better inform the selection of the lo-

cations for dedicated observational andmodeling efforts

in the future.
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