Atmospheric Rivers Workshop: June 15-17, 2015

Atmospheric Rivers Workshop: June 15-17, 2015

June 19, 2015

An atmospheric rivers (AR) workshop was held 15-17 June at the Seaside Forum at UC San Diego/Scripps Institution of Oceanography (SIO). This workshop was sponsored by the Center for Western Weather and Water Extremes (CW3E) at SIO. Mike Dettinger, David Lavers and Marty Ralph were co-chairs of this workshop. The photo below shows the workshop participants.

Left to right: Jay Jasperse (Sonoma County Water Agency), Jennifer Haase (Scripps), Lauren Muscatine (UC Davis), Brian Kawzenuk (Scripps/CW3E), Tamara Shulgina (Fulbright Scholar at Scripps/CW3E), Sasha Gershunov (Scripps/CW3E), Joel Norris (Scripps and CW3E), Roger Pierce (NOAA/NWS), Harald Sodemann (Univ. of Bergen), Marty Ralph (Scripps/CW3E; Workshop Co-Chair), Nina Oakley (Univ. of Nevada Reno), Mike Dettinger (USGS & Scripps/CW3E; Workshop Co-Chair), Dale Cox (USGS), David Lavers (Scripps/CW3E; Workshop Co-Chair), Jon Rutz (NWS), Jason Cordeira (Plymouth State Univ.), Andrew Martin (Scripps/CW3E), Allen White (NOAA/ESRL), Bin Guan (UCLA), Heini Wernli (ETH Zurich), Larry Schick (US Army Corps of Engineers), Dan Cayan (Scripps/CW3E and USGS), Julie Kalansky (Scripps/CW3E), Ryan Spackman (Science and Technology Corp. and NOAA/ESRL), Maximiliano Viale (Univ. of Chile). Attendees not in picture: Mike Anderson (California Dept. of Water Resources), Bruce Cornuelle (Scripps & CW3E), Duane Waliser (NASA/JPL)

This workshop brought together experts from around the world to survey the current state of atmospheric-river (AR) science and plan the First International Atmospheric Rivers Conference to be held in summer 2016 at Scripps’ Seaside Forum. The group also planned the development of a Monograph on atmospheric rivers that is intended to become the standard reference on the roughly 20 years of AR research. The meeting addressed an outstanding debate in the science community about the physical relationship between ARs, the warm conveyor belt (WCB) in extratropical cyclones and tropical moisture exports (TME) to the extratropics.
The workshop concluded with a plan for the conference in 2016, a strategy for the book, and development of a schematic summary of the relationships between ARs, WCBs and TMEs, each of which plays a critical and complementary role in transporting water vapor through the atmosphere, in terms of horizontal transport and sloped ascent in extratropical cyclones.
The term “atmospheric river” was first coined in 1994 to describe atmospheric water vapor transport across the mid-latitudes. Subsequent research has shown them to be responsible for the majority of extreme hydrologic events in the western United States, Europe, and South America, as well as being critical to water resources in these regions.

For real-time observations and forecasts of atmospheric rivers, please visit the “AR Portal”

Closed Low Event May 6-10: A Preliminary Synopsis

Closed Low Event May 6-10: A Preliminary Synopsis

May 15, 2015

CW3E researcher Nina Oakley provides a preliminary synopsis for a closed low that developed in the Pacific Northwest and moved south along the California/Nevada border over the 6-10 May period. The closed low turned east over southern California with a very cold core moving over a warm surface. The easterly flow produced orographic precipitation on the eastern side of the Sierra with minimal precipitation on the western side of the Sierra. Large areas of the Great Basin experienced precipitation amounts that were not extreme but significant for May.


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Climatology of extreme daily precipitation in Colorado

CW3E Publication Notice

Climatology of extreme daily precipitation in Colorado and its diverse spatial and seasonal variability

May 5, 2015

Seasonality of the top 10 daily precipitation events measured at Colorado COOP stations that have at least 30 years of data since 1950. Circles represent totals of 10 events. Seasons shaded as winter (DJF; blue), spring (MAM; yellow), summer (JJA; red), and fall (SON; green). Terrain elevation (m; gray shading) as in legend at left; Continental Divide shown by dashed black line.

The origins of extreme precipitation events in the Western U.S. range from landfalling atmospheric rivers, to the summer monsoon, upslope storms on the Rocky Mountain Front Range, and deep convection of the Great Plains variety. This was shown by an analysis across the west of the seasonality of the top 10 wettest days for each of thousands of COOP observer sites (Ralph et al. 2014**). Each of these sites had at least ~10,000 data points, so these top 10 days represent roughly the top 0.1% of days. Some areas were universally dominated by events in one season, or two. A couple of areas stood out in the diversity of their seasonality of extreme daily precipitation, including Colorado.

The study presented in Mahoney et al. 2015* explores this local variability more deeply, explores how the devastating flood of September 2013 in Colorado’s northern Front Range is related, and describes some of the implications of the findings for flood control and other sensitive sectors. The co-authors represent a diverse group themselves, including climate, weather, hydrology, hydrometeorology expertise from several organizations, (CIRES, NOAA/PSD, Scripps/CW3E and CSU). The paper is highlighted here as it represents an example of work on extreme events in the Western U.S. that the Center for Western Weather and Water Extremes is contributing to.

Abstract of Mahoney et al. 2015*: The climatology of Colorado’s historical extreme precipitation events shows a remarkable degree of seasonal and regional variability. Analysis of the largest historical daily-precipitation totals at COOP stations across Colorado by season indicates that the largest recorded daily precipitation totals have ranged from less than 60 mm/day in some areas to greater than 250 mm/day in others. East of the Continental Divide winter events are rarely among the top 10 events at a given site, but spring events dominate in and near the foothills; summer events are most common across the lower-elevation eastern plains, while fall events are most typical for the lower elevations west of the Divide. The seasonal signal in Colorado’s central mountains is complex; high-elevation intense precipitation events have occurred in all months of the year, including summer when precipitation is more likely to be liquid (as opposed to snow) which poses more of an instantaneous flood risk.

*Mahoney, K., F.M. Ralph, K. Wolter, N. Doesken, M. Dettinger, D. Gottas, T. Coleman, and A. White, 2015: Climatology of extreme daily precipitation in Colorado and its diverse spatial and seasonal variability. J. Hydrometeor. 16, 781-792.

** Ralph, F. M., M. Dettinger, A. White, D. Reynolds, D. Cayan, T. Schneider, R. Cifelli, K. Redmond, M. Anderson, F. Gherke, J. Jones, K. Mahoney, L. Johnson, S. Gutman, V. Chandrasekar, J. Lundquist, N.P. Molotch, L. Brekke, R. Pulwarty, J. Horel, L. Schick, A. Edman, P. Mote, J. Abatzoglou, R. Pierce and G. Wick, 2014: A vision for future observations for Western U.S. extreme precipitation and flooding– Special Issue of J. Contemporary Water Resources Research and Education, Universities Council for Water Resources, Issue 153, pp. 16-32.

Sonoma County Water Agency and CW3E — Monitoring sites expected to improve forecast capability

Sonoma County Water Agency and CW3E — Monitoring sites expected to improve forecast capability<

September 2013

South end of Lake Mendocino; September 2013 (photo by Kent Porter / Press Democrat)

The Santa Rosa Press Democrat (Sean Scully) published an article: “Weather forecasting a key concern for Sonoma County Water Agency”. CW3E is working with the Sonoma County Water Agency and the Hydrometeorology Testbed (HMT) data to improve forecasts in the region. The data being gathered from HMT will lead to improved forecasting of Atmospheric River (AR) events. These events are significant rain producers in the region and strongly impact how water is managed. Better management would lead to storage that could help prevent extremely low lake levels (as shown at Lake Mendocino above). Please find the full Press Democrat article here.

Test Beds Linking Research and Forecasting

Test Beds Linking Research and Forecasting

September 10, 2013

TestBeds Linking Research and Forecasting

A new article written by Marty Ralph and colleagues was recently published in the Bulletin of the American Meteorological Society focusing on the emergence of weather-related test beds. The paper provides a brief background on how these test beds successfully bridged the gap between research and forecasting operations; summarizes test bed origins, methods and selected accomplishments; and provides a perspective on the future of test beds. A personal use copy of the paper can be obtained here.

“Atmospheric Rivers”: Rising Interest in Science and the Media

“Atmospheric Rivers”: Rising Interest in Science and the Media

April 25, 2015

The term “atmospheric river” was first coined in 1994 to describe atmospheric water vapor transport across the mid-latitudes. Subsequent research has shown them to be responsible for the majority of extreme hydrologic events in the western United States, Europe, and South America, as well as being critical to water resources in these regions.

A recent analysis conducted by Ann Coppin and Duane Waliser of NASA’s Jet Propulsion Laboratory and Marty Ralph of Scripps Institution Of Oceanography’s CW3E has highlighted the growing number of journal publications using the term “atmospheric rivers”, illustrating a growing use for this terminology (see figure below).

The number of publications using the term “atmospheric river” from 1994-2013

The number of references across different media outlets has also risen underscoring the increasing public interest in this phenomenon (see figure below).

The number of times the term “atmospheric river” has been used across various media outlets from 2005-2015

Resilience in a Changing Climate: Sonoma County Adaptation Forum

Resilience in a Changing Climate: Sonoma County Adaptation Forum

April 15, 2015

CW3E director Marty Ralph and scientist Julie Kalansky presented at the Sonoma County Adaptation Forum on April 8th. The forum was modeled after state forums, but was the first regional adaptation forum in California. The forum focused on information and approaches to help mitigate the impacts of climate change in Sonoma County and surrounding areas. The audience of over 200 people included city and county leaders, utility managers, environmental groups and the public.

Both Marty and Julie presented in the first session of the morning entitled “Extreme Weather Science; Drought and Deluge in Sonoma County.” Jay Jasperse, Chief Engineer and Director of Groundwater Management at Sonoma County Water Agency, moderated the session. The other panelists included Tim Doherty, from NOAA’s Office for Coastal Management, who discussed the impacts of sea level rise on the region, and Dr. Lisa Micheli, Executive Director of Pepperwood Preserve, who presented on the importance of downscaling climate models to understand the regional response to climate change. Marty Ralph discussed the importance of atmospheric rivers (ARs) to the water supply as well as the potential flooding risk associated with ARs. This led into an explanation of the FIRO, forecast informed reservoir operations, project for improving the water supply resilience of Lake Mendocino. At the end of his presentation he introduced the first part of an ongoing NOAA-NIDIS and Sonoma County Water Agency funded project to examine how the frequency and intensity of ARs may change in future. The link below is to an interview with Marty Ralph about atmospheric rivers and the forum that was broadcasted on North Bay Public Radio.

http://radio.krcb.org/post/charting-local-adaptations-climate-change

After Marty’s presentation, Julie presented on the second part of the study including the development of a “mega-drought” stress test for the region and working with the community to understand the all the different dimensions of drought. During Julie’s presentation, she was able to involve the audience and received feedback on the vulnerabilities to drought and the difficult decisions that surround drought. The day was a great success in bringing together scientists, decisions makers and the public to discuss how to make the community more resilient to climate change.

CW3E Welcomes Brian Kawzenuk

CW3E welcomes Brian Kawzenuk

March 30, 2015

CW3E is pleased to welcome Brian Kawzenuk as a staff research associate. Brian joins us from completing his master’s work with Dr. Jason Cordeira at Plymouth State University in New Hampshire. At Plymouth Brian investigated the impacts of land-falling atmospheric rivers (ARs) on the west coast during February 2014. The structure and dynamics of AR events as well as their influence on extreme precipitation over the west coast were explored. Brian looks forward to continuing his study of AR events and using his extensive analytic and programming skills to help the CW3E team develop stakeholder tools. Brian grew up in central New York State and has always had a passion for meteorology. We’re delighted to welcome him to the team and hope he enjoys the milder climate of the La Jolla region.

Sonoma County Water Agency video posted about Atmospheric Rivers

Sonoma County Water Agency (SWCA) Video posted about Atmospheric Rivers (ARs)

March 4, 2015

CW3E is pleased to be part of a recent video produced by our partners at the Sonoma County Water Agency (SCWA) and hosted by SCWA Director Shirlee Zane. This video focuses on the importance of Atmospheric Rivers (ARs) to California’s precipitation. Extremes of both drought and flood are examined for their link to ARs and impact on the Sonoma region. Emphasis is placed on the importance of understanding ARs and applying that knowledge to create better forecast information to help SCWA prepare for drought and potential flood conditions. Shirlee points out a key goal of our collaboration: “retain water without increasing flood risk”.

DWR Video posted about CalWater and ARs

DWR Video posted about CalWater and ARs

February 27, 2015

CW3E is pleased to be part of a recent video produced by Elissa Lynn, program manager at California’s Department of Water Resources (a CW3E partner). This video focuses on the recent CalWater 2015 – ACAPEX Field Campaign and the importance of Atmospheric Rivers (ARs) to California’s precipitation. This video provides excellent background information about ARs and how unique CalWater 2015 was with the availability of 4 different aircrafts and a NOAA research vessel examining ARs simultaneously. The importance of atmospheric aerosols from humans and their potential link to precipitation quantity is also described in this video.