CW3E congratulates Mike Dettinger – 2014 AGU Fellow<
July 30, 2014
CW3E congratulates Mike Dettinger – 2014 AGU Fellow<
July 30, 2014
CW3E welcomes Reuben Demirdjian
June 24, 2014
CW3E is pleased to welcome Reuben Demirdjian. Reuben joins CW3E to pursue his doctoral degree at Scripps Institution of Oceanography. Reuben completed his undergraduate degree at UC Santa Barbara in physics. “I met Dr. Ralph at the Scripps Open House and was impressed with the group he is building and his enthusiasm for understanding the role atmospheric rivers play in the precipittion regime of California and the western US,” Reuben said. Reuben is getting a head start this summer learning tools, especially the WRF (Weather, Research and Forecasting) model, and use of dropsonde observations from research aircraft. |
CalWater 2015 Advanced Planning Workshop
June 10, 2014
CW3E is pleased to host a CalWater 2015 Advanced Planning Meeting for Forecasting at Scripps Institution of Oceanography from 24-25 June 2014. The purpose of this meeting was to begin preparing for a major deployment of 3 aircraft, a ship and ground-based observation sites this winter. Specifically the aim was to focus on the development of forecast requirements specific to the field experiment and implementation of forecasts for meteorological and chemical/aerosol dimentions of CalWater-2015. Coordinators of this meeting were Jason Cordeira (Plymouth State University), Andrew Martin (Scripps Institution of Oceanography) and Jonathan Rutz (NOAA/National Weather Service). Other participants included Ryan Spackman and Natalie Gaggani (NOAA STC/PSD) and Roger Pierce (NOAA/NWS).
Sonoma County Water Agency (SCWA) and Scripps Institution of Oceanography establish a Cooperative Agreement for Scientific and Educational Cooperation
July 2014
SCWA entrance; Santa Rosa, California.
Sonoma County Water Agency (SCWA) provides water for over 600,000 people from the Russian River in northern California. It also supports a vibrant economy famous for its wine and tourism, while at the same time working to restore endangered salmon species. SCWA performs this vital role in the face of a climate characterized by major swings in precipitation, ranging from major flooding to drought. These swings are largely controlled by the presence, absence and strength of atmospheric river storms, a topic for which CW3E provides deep and cutting-edge knowledge.
During meetings between CW3E and SCWA it became apparent that key capabilities at CW3E and needs for new information and tools at SCWA were well aligned. This led to the development of joint projects, including some with NOAA and/or USGS, for which it would be advantageous to formalize the relationship in a way that provides space for CW3E staff to spend productive time interacting with SCWA staff and their stakeholders. It also is seen as an opportunity for SCWA to highlight its forward looking culture of innovation geared toward improving its services and stewardship.
Specifically, the agreement sets forth to initiate cooperation to further the development of basic scientific and applied research with goals of advancing research in ocean science and meteorology, gaining a more fundamental understanding of the ocean and meteorology, and benefiting society at large. It also aims to maintain and promote channels of cooperation and communication that permit the exchange of academic and scientific knowledge, which will assist the Water Agency in carrying out water supply management more efficiently and effectively and the U.S. Army Corps of Engineers with flood control operations.
Three early projects form the initial use of this agreement: 1) study of the role of atmospheric rivers in filling Lake Mendocino and potentially offering predictability to retain water without increasing flood risk, 2) a NOAA-funded climate program office project to study the role of atmospheric rivers in ending droughts on the Russian River, including how this may be affected by a changing climate, as well as development of a drought scenario and drought readiness assessment, and 3) cooperation in developing a feasibility assessment project for the potential use of forecast-informed reservoir operations (FIRO) for Lake Mendocino in cooperation with the US Army Corps of Engineers. The FIRO effort is taking a major step forward through a workshop that is being conducted in August 2014 at Scripps. Representative of the partnership this important cooperative agreement creates, the FIRO Workshop is co-chaired by Jay Jasperse, Chief Engineer for SCWA, and F. Martin Ralph, Director of CW3E at UCSD/Scripps.
CW3E Publication Notice
Chemical properties of insoluble precipitation residue particles
Jessie Creamean posing for a photo while clearing snow from the top of the NOAA trailer at Sugar Pine Dam after the storm on 2/25/11.
This article provides an in-depth analysis of resuspended residues from precipitation samples collected at a remote site in the Sierra Nevada Mountains in California during the 2009-2011 winter seasons. These residues may be used as a benchmark for classification of insoluble precipitation. Knowledge of the precipitation chemistry of insoluble residues coupled with meteorological and cloud microphysical measurements will ultimately improve our understanding of the link between aerosols, clouds, and precipitation.
This paper represents a significant milestone from the CalWater experiment, which is led by members of UCSD/Scripps’ new Centers on aerosols (CAICE) and extreme events (CW3E), as well as NOAA, DOE, NASA, USGS. It also highlights the multi-disciplinary research stimulated by CalWater, and the partnerships between key researchers across organizations. The lead author, Jessie Creamean, received her PhD in atmospheric chemistry from UCSD under Kim Prather using CalWater data, and is now bringing that expertise to a primarily meteorological group in NOAA as she pursues emerging topics in aerosol-precipitation interactions in collaboration with CW3E scientists.
A personal use copy of the article is available here.
CalWater-ACAPEX 2015 Planning Workshop
CalWater-2 took major steps from vision to reality on 22-24 April 2014 at Scripps Institution of Oceanography when roughly 40 key individuals (scientists, engineers, aircraft and ship managers, and students) met to plan for major field deployments in 2015. The following facilities are committed (or nearly so) to a field campaign between roughly 10 January and 10 March 2015:
The DOE facilities are part of the ARM Cloud Aerosol Precipitation Experiment (ACAPEX) experiment addressing (1) aerosol impacts on clouds and precipitation and (2) atmospheric rivers. The NOAA facilities were requested also based on the CalWater vision, with an emphasis on atmospheric-river science questions.
The workshop concluded with a plan for specific start and end dates for each facility, narrowed options for where to operate them, a plan for a field operations center (and a specific possible location), strategies for developing coordinated ship and aircraft operations, and plans for the forecasting capabilities needed to guide missions. In addition, the 12-member CalWater Core Scientific Steering Group met afterword and reviewed plans for 2016-2018 and strategies to advance the longer term Calwater Vision. The Steering Group committed to organizing two special sessions and a side meeting (for last minute coordinations of the 2015 CalWater and ACAPEX activities) at the Fall Meeting of AGU in December 2014, and a journal article describing the program. The proposed AGU sessions are:
The presentations from the Workshop are available here.
Workshop Sponsored by:
Workshop Sponsored by:Workshop Participants
Photo of most workshop participants at the CalWater 2015 – ACAPEX workshop at Scripps, April 2014.
CW3E Director Marty Ralph Featured in ClimateWire Article
CW3E and Director Marty Ralph are featured in an in-depth article recently posted on the ClimateWire website. A copy of the complete article is available here. |
CW3E Director Marty Ralph. Photo by Anne C. Mulkern |
Atmospheric Rivers Play Key Role in Rare Greenland Melt Episodes
Integrated Water Vapor (IWV) impacting Greenland on July 9, 2012 based on data from the 20th Century Reanalysis.
Researchers at NOAA’s Earth System Research Laboratory and the Center for Western Weather and Water Extremes here at Scripps have published a new article examining the processes responsible for the unusual melting episode in Greenland during the summer of 2012 when temperatures at the summit of Greenland rose above freezing for the first time since 1889. They found a number of climate factors were present in both 1889 and 2012 including strong atmospheric rivers transporting warm, moist air towards Greenland’s west coast. The research article was published in the Journal of Geophysical Research – Atmospheres.
A more in depth news story on this research can be found on the Scripps website.
A personal use copy of the article is available here.
Vision for Future Observations of Extreme Precipitation and Flooding in the Western U.S.
A journal article entitled: A Vision for Future Observations for Western U.S. Extreme Precipitation and Flooding, by CW3E Director F. Martin Ralph and colleagues was recently published in the April 2014 issue of the Journal of Contemporary Water Research and Education The paper describes how new technologies and paradigms using the most recent technological and scientific advances can be used to better monitor and predict extreme storms that lead to flooding in the Western U.S. The strategy is intended to add new technology to existing observational networks rather than replacement. The full journal article can be accessed here. |
Schematic network of new sensors (land-based) to improve monitoring, prediction, and climate trend detection for hydrometeorological conditions that create extreme precipitation and flooding. |
Atmospheric Rivers: Drought Busters
Climate.gov recently highlighted CW3E researcher Mike Dettinger’s work looking at atmospheric rivers as drought busters (click here to see the climate.gov post). Mike’s article “Atmospheric Rivers as Drought Busters on the US West Coast” was published in December 2013 in the AMS Journal of Hydrometeorology (find a link to this article on the CW3E publications page or click here). Given the dry conditions that have persisted over the last few years causing severe to extreme drought over the US West this article has received well-deserved attention. The climate.gov piece highlights the impact of an atmospheric river storm from January of 2010. This image (shown above) illustrates the drought conditions before the storm (left panel), the amount of precipitation from the storm (middle panel – showing some areas had over 20 inches of precipitation!) and the drought conditions after the storm (right panel – showing the moderate and severe drought region greatly reduced).